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This special issue on fragile X-associated disorders 
will open your eyes to the broad spectrum of clinical 
involvement that occurs with mutations in the FMR1 
gene. This gene creates a protein, FMRP, which is a 
key protein for regulating the translation of hundreds of 
mRNAs, particularly those involved in synapse formation 
and plasticity. Fragile X syndrome (FXS) results from the 
loss or deficiency of FMRP and it is the most common 
cause of inherited intellectual disability and autism or 
autism spectrum disorder (ASD). The review of animal 
models for FXS by Kazdoba-Leach et al. (2014) in this 
issue, demonstrates how these models have led the way 
to targeted treatments for FXS and for ASD. One of the 
more promising new treatments for FXS is the use of 
low dose sertraline in young children 2 years and older 
with FXS. The paper by Hansen and Hagerman (in this 
edition) outlines the benefits of sertraline including 
the enhancement of serotonin neurotransmission, 
neurogenesis, and BDNF levels that has the potential to 
improve language and development for these children. 
GABA agonists and mGluR5 antagonists have also been 
studied in FXS but the mouse model is easily rescued 
with many different targeted treatments, whereas the 
patients with FXS have only responded well to a few 
new treatments. There is a great need to improve the 
participation of minorities in the new clinical trials of 
targeted treatments for FXS and this is reviewed in detail 
by Chechi et al. (2014) in this issue.
 Fragile X-associated disorders include both FXS 
and premutation disorders also. The field of premutation 
involvement (55 to 200 CGG repeats in the 5'end of 
FMR1) is growing rapidly as reviewed by Lozano et al. 
(2014) in this issue. RNA toxicity from elevated levels of 
FMR1 mRNA leads to molecular consequences that affect 
neurological, endocrine, psychiatric and rheumatological 
health throughout the lifespan. Problems may begin 
in childhood, such as anxiety, ADHD and social 
deficits, with additional issues that complicate adult life 

including early ovarian insufficiency, hypothyroidism, 
fibromyalgia, migraines, hypertension, sleep apnea, 
restless legs syndrome, neuropathy and eventually for 
some, the fragile X-associated tremor ataxia syndrome 
(FXTAS). The premutation is common in the general 
population, approximately 1 in 130-250 women and 1 in 
250 to 450 males as reviewed by Muzar et al. (2014) in 
this issue. Both FXTAS and other premutation disorders 
are under-diagnosed currently and it behooves physicians 
and other health care providers to read the enclosed 
papers carefully so that premutation disorders are 
considered in the differential diagnosis of these common 
medical problems. Often the diagnosis is considered 
when the family history includes someone with autism 
or intellectual disability of unknown etiology or an 
older relative with a Parkinsonian symptom complex 
or even dementia. It is easy to order a fragile X DNA 
test if either a premutation or a full mutation disorder 
is suspected. Once a diagnosis is made then a treatment 
plan can be made. Life style changes are important in the 
treatment of premutation carriers since substance abuse 
can exacerbate FXTAS as demonstrated in the cases of 
Muzar et al. (2014) in this issue. Other treatment options 
are discussed in the FXTAS review in this volume.
 Once a diagnosis of a fragile X condition is made 
then genetic counseling is recommended and all family 
members who are at risk for a premutation or a full 
mutation should be tested. The risk for a women with the 
premutation to pass on a full mutation to her offspring is 
significantly impacted by the number of AGG anchors 
she has within her CGG repeats.  An AGG anchor occurs 
approximately every 9 to 10 CGG repeats and the more 
anchors one has the lower the risk for expansion to a 
full mutation in the next generation. Yrigollin et al. 
(2014) in this issue clarifies this risk in a broad array 
of international populations. This work guides genetic 
counselors in their risk assessment for families. 
 This volume contains a rich array of papers that 
traverses molecular to animal to human studies to give 
a full picture of the progress in the fragile X field. 
Clinicians and bench scientists will all benefit from the 
research presented in this volume.

                                                       (November 29, 2014)

DOI: 10.5582/irdr.2014.01033Editorial
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Current research, diagnosis, and treatment of fragile X-associated 
tremor/ataxia syndrome
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1. Introduction

The fragile X mental retardation 1 gene (FMR1) which 
causes fragile X syndrome if fully mutated (more than 200 
CGG-repeats in the polymorphic region- 5'UTR), was 
discovered in 1991. This discovery led to the description 
of premutation carriers (individuals with smaller alleles, 
55-200 CGG repeats) and was followed by a better 
understanding of the transition propensity, the expansion 
of the unstable allele of women with the premutation, 
and a better genetic counseling for risk of offspring with 
fragile X syndrome (the most common monogenetic 
form of autism and intellectual disability). Later on an 
intermediate allele was described (45-54 repeats) which 
has a variable risk for disorders that are associated with 
the premutation. Although before the discovery of the 
FMR1 gene, Cronister and colleagues (1) had reported 
a much higher incidence of early ovarian failure (before 
the age of 40 years) in females premutation carriers 
(PMC), PMC were generally seen as clinically unaffected 
(2-4). After the description of fragile X-associated 

primary ovarian insufficiency (FXPOI) in 1991 and 
FXTAS in 2001, there has been a general recognition 
that premutation alleles are associated with a wide range 
of clinical involvement. It is now widely recognized that 
PMC are at risk to develop a range of mild cognitive and 
behaviors problems during childhood and neurological, 
psychiatric and other immune-mediated disorders during 
adulthood (5). The prevalence of the FMR1 premutation 
has been described to be 1 in 113 to 259 females and 
1 in 260 to 813 males in the general population (6-11). 
This suggests that about 1 in 3,000 men and about 1 
in 6,000 women in the general population have fragile 
X-associated tremor/ataxia syndrome (FXTAS), which 
could be a common neurodegenerative disorder among 
the general population; however, more studies are 
necessary to define the incidence and prevalence of 
FXTAS. The clinical recommendations for testing of 
FMR1 mutation have been expanded after the description 
of premutation disorders and in this review we provide 
recommendations of offering testing for adults and will 
discuss the recent clinical, radiological, molecular and 
treatment research in FXTAS.

2. Clinical indications for FXS genetic testing in 
adults

The family history is crucial to determine whether 

Summary Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a premutation 
CGG-repeat expansion in the 5'UTR of the fragile X mental retardation 1 (FMR1) gene. 
The classical clinical manifestations include tremor, cerebellar ataxia, cognitive decline 
and psychiatric disorders. Other less frequent features are peripheral neuropathy and 
autonomic dysfunction. Cognitive decline, a form of frontal subcortical dementia, memory 
loss and executive function deficits are also characteristics of this disorder. In this review, 
we present an expansion of recommendations for genetic testing for adults with suspected 
premutation disorders and provide an update of the clinical, radiological and molecular 
research of FXTAS, as well as the current research in the treatment for this intractable 
complex neurodegenerative genetic disorder.

Keywords: FXTAS, tremor/ataxia, premutation carrier, FMR1, FMR1 mRNA, FMPR, late-onset 
neurological disorder and neurodegenerative disorder

DOI: 10.5582/irdr.2014.01029Review



www.irdrjournal.com

Intractable & Rare Diseases Research. 2014; 3(4):101-109.

there is an X-linked inheritance pattern of intellectual 
disability (ID) which would be typical for fragile X 
syndrome. However clinical suspicion of a premutation 
disorder should also be a consideration for FMR1 DNA 
testing. The American Academy of Pediatrics and 
the American College of Medical Genetics currently 
recommends FMR1 DNA testing for all children and 
adults with undiagnosed developmental delay/ID (12) 
and/or autism (ASD) (13). The American College 
of Obstetricians and Gynecologist (ACOG) also 
recommends testing in women with a family history 
of fragile X-related disorders, such as, unexplained 
ID/developmental delay, ASD or primary ovarian 
insufficiency (POI). In order to expand the screening 
criteria and to capture more premutation carriers the 
ACOG also recommends offering testing to all women 
who request fragile X carrier screening regardless of 
their personal and family history and also recommends 
to offer prenatal testing by amniocentesis or CVS to 
a known pregnant PMC (14). We also recommend 
considering genetic testing when there is personal 
medical history of unexplained late onset dementia or 
parkinsonism with any other associated premutation 
disorder and to consider testing in individuals with 
family history of a member with unexplained POI and 
mood/anxiety disorder, fibromyalgia and mood/anxiety 
disorder, and undiagnosed dementia or parkinsonism 
and anxiety/mood disorder (Table 1).

3. FXTAS

Although the prevalence of FXTAS in the general 
population is uncertain, FXTAS occurs in approximately 
40-45% of male PMC and 8-16% of female PMC 
over the age of 50 (15-18). The common features of 
FXTAS are cognitive decline, autonomic dysfunction, 
neuropathy, and psychiatric features such as anxiety, 
depression, and apathy (16,19-21). Impairments in 
executive function abilities including working memory, 
inhibitory control and visuospatial processing begin as 
early as middle adulthood, and progressively worsen 
with increasing age (22-26). Subsequently dementia 
develops in approximately 50% of male PMC and 
autonomic dysfunction which is thought to be a 
consequence of involvement of the peripheral nervous 
system in common (27,28). Premutation-associated 

psychiatric problems are common in adulthood but 
these problems can worsen before the appearance of 
tremor and ataxia (20,29-31). The increased lifetime 
prevalence of mood disorders (65%) and of anxiety 
disorders (52%) in individuals with FXTAS is greater 
than in those PMC without the FXTAS (20,31). The age 
of onset of FXTAS is typically between the ages of 60 
and 65 years; the mean age of onset is 62 years (32,33). 
However, the chance of developing core symptoms of 
FXTAS (tremor and ataxia) increases with age. From 
age 50-59 the prevalence of FXTAS in males is 17 
percent, from age 60-69 about 38 percent, from age 70-
79 about 47 percent, and in males over 80 years old, 
about 75 percent (32). 
 Men are more frequently diagnosed with a definite 
diagnosis of FXTAS compared to women (34). A 
previous longitudinal study of progression of tremor 
and ataxia in 55 male PMCs showed that tremor usually 
occurs first, with median onset of ~ 60 years of age (35). 
After the tremor onset, the median onset of ataxia was 2 
years later; onset of falls was 6 years later; dependence 
on a walking aid was 15 years later; and death was 
21 years later (35). The rate of progression of FXTAS 
varies and life expectancy is between 5 to 25 years after 
the onset of the symptoms (36).
 FXTAS in females was initially reported in 2004 
(37). FXTAS is less common and shows a milder 
presentation in females because they have a normal 
X chromosome in addition to the FMR1-premutated 
X-chromosome (34). The proportion of normal FMR1 
alleles on the active X chromosome (activation ratio) is 
thought to modulate the phenotypic severity in females 
(38); however, double heterozygous female have 
been reported and they seem to have a similar clinical 
presentation to heterozygous females (39,40). Dementia 
was found in 21-50% males with FXTAS (32,36). In 
females with FXTAS, however, dementia is far less 
common (36,37) and it has been reported in only a few 
cases (41-45). Females with FXTAS may also exhibit 
parkinsonism, although at a lower rate than in males 
with FXTAS (34). There are associated symptoms in 
females with FXTAS that usually do not occur in males, 
including thyroid disorders, fibromyalgia and chronic 
muscle pain (46,47). Conversion disorder has also been 
reported in a PMC female (48). Migraine headache 
were reported in a higher rate in females (54.2%) when 

102

Table 1. Guidelines to recommend and offer FXS genetic testing

Women

All Adults

Recommend Genetic Testing

• Premature ovarian insufficiency
• Women who request fragile X prenatal carrier screening 

• Intellectual Disability (ID)
• Autism Spectrum Disorder (ASD)
• Family history of ID or ASD 
• Family history of FXS 
• Unexplained late onset tremor and ataxia

Offer Genetics Testing

• Family history of POI and mood/anxiety disorder
• Family history fibromyalgia and mood/anxiety disorder
• Prenatal testing by amniocentesis or CVS for known PMC

• Late onset dementia associated other premutation disorders
• Family history of undiagnosed dementia or parkinsonism
  associated other premutation disorders
•"MCP sign" or white matter lesions in the cerebral white matter
  on MRI
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prefrontal cortices that are critical for cognitive control 
(54). Correspondingly, those with FXTAS and the MCP 
sign are likely to have more severe cognitive deficits 
and a longer history of symptoms than those without 
the MCP sign (55). Asymptomatic FMR1 premutation 
carriers show white matter alterations (demyelination 
and axonal damage) of the afferent projections of the 
MCPs and superior cerebellar peduncles (53,56,57), 
which may be the earliest neuroanatomical marker of 
the onset of cognitive and motor symptoms associated 
with FXTAS (58). 
 Other common neuroimaging signs of FXTAS 
include white matter hyperintensities in the pons, insula, 
splenium of the corpus callosum, and periventricular 
region (59,60). T2-weighted and FLAIR corpus 
callosum splenium (CCS) hyperintensity was as frequent 
(68%) as MCP hyperintensities (64%) and it may be a 
marker of severe disease progression in FXTAS (34). 
Women with FXTAS have less white matter disease 
and brain atrophy on MRI, as well as less dementia in 
late-stages of FXTAS than men with FXTAS (36,50). 
The MCP sign was demonstrated in 13% of females 
compared with 58% of males with FXTAS (50). Corpus 
Callosum Splenium (CCS) hyperintensities were present 
in 50% of females versus 72% males (34). 

5. Diagnosis and clinical severity stage of FXTAS

The FXTAS diagnostic revised criteria are presented 
in Table 2 (16,17). The clinical severity of FXTAS is 
estimated by using an empirical staging system, which 
incorporates the motor signs of FXTAS. The system 
gives an indication of the impact of motor aspects of 
the disease on activities of daily living as described in 
Table 3.

6. Molecular mechanisms of FXTAS

PMC were initially described with normal FMRP 
levels (61-64). However new molecular techniques led 
Tassone and colleagues (2000) (65) to the identification 
of increased FMR1 mRNA levels; Kenneson and 
colleagues (2001) (66) also demonstrated low FMRP 
levels in PMC. Current research shows that as the 
premutation increases from 55 to 200, particularly 

compared with males (26.8%) with the permutation (49). 
Immune mediated disorders have been described at a 
higher rate in females with FXTAS 72.73% compared 
with 46.54% female carriers and both rates are higher 
than published controls (47). Females with FXTAS also 
have a lower frequency of tremor compared to males 
with FXTAS (34). 

4. Radiological findings

Cerebral magnetic resonance imaging (MRI) in patients 
with FXTAS shows global brain atrophy, enlargement 
of ventricular volume, white matter disease and 
heightened signal intensity with lesions in the middle 
cerebellar peduncles (50-53) (Figure 1). The middle 
cerebellar peduncle (MCP) sign presents as white matter 
hyperintensities in the middle cerebellar peduncles, and 
it is a cardinal radiological sign for the diagnosis of 
FXTAS (16). The MCP sign includes fronto-cerebellar 
tracts connecting to orbitofrontal and dorsolateral 

Table 2. Current diagnostic criteria of FXTAS

Diagnostic

Clinical

Radiological

Definite
Probable
Possible

Major
Minor

Major
Minor

one major clinical + one major radiological or one major clinical + intranuclear inclusions  (postmortem)
two major clinical or one minor clinical + one major radiological
one major clinical + one minor radiological

intention tremor; cerebellar ataxia
Parkinsonism; moderate to  severe short term or executive function deficits; neuropathy

MCPs; MRI white matter lesions in splenium of the corpus callosum (or postmortem intranuclear inclusions)
MRI lesions in the cerebral white matter; moderate to severe generalized atrophy

MCPs; white matter lesions in middle cerebellar peduncle sign.

Molecular: FMR1 gray mutation, premutation or full mutation (Mandatory for all categories).

Figure 1. MRI features of FXTAS. (A1) Moderately thin 
truncus of the corpus callosum with severe increased signal 
intensity in both the truncus and the splenium, and moderate 
cerebellar and cerebral (A2) volume loss. (A3) Mild white 
matter changes in the middle cerebellar peduncles (MCPs). 
(B1) Severe increased T2 signal intensity in the pons (can 
also be seen in B3). (B2) Severe diffuse increased T2 signal 
intensity in the deep white matter of the cerebrum, as well as 
periventricular. (B3) Moderately thin truncus of the corpus 
callosum with severe increased T2 signal intensity in both 
the truncus and the splenium.
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more than 110 CGG repeats, the level of FMR1 mRNA 
increases and the levels of FMRP start to decline 
(67,68). The CGG repeat size also correlates with 
the age of onset and the age of death from FXTAS 
(38,67). The elevated level of mRNA in PMCs led 
to the hypothesis of "FMR1 mRNA toxicity" in 
FXTAS, however the causative mechanism of increase 
transcription by the CGG repeat remains unclear as 
well as the mechanism of neuronal toxicity by the 
accumulation of the FMR1 mRNA. There are a few 
suggested pathological models including; "RNA 
toxicity"; a sequestration model which suggests that 
the RNA expanded CGG repeats are pathogenic by 
toxic sequestration of crucial transcriptional proteins 
(DROSHA-DGCR8, hnRNP A2/B1, SAM68, Purα, 
Rm62, and CUGBP1) (69-72); a non-canonical 
translation the CGG repeats which may result in the 
expression of toxic polyglycine products (73,74); and 
lastly the presence of antisense FMR1 transcription 
which may lead to toxicity by antisense transcripts 
products (75). 

7. Neuropathology and neurobiology of FXTAS

The neuronal toxicity is thought to be led by the 
formation of pathognomonic eosinophilic and ubiquitin-
positive intranuclear inclusions in neurons and 
astrocytes throughout the brain, peripheral nervous 
system and other organs such as the adrenals, thyroid, 
heart, Leydig cells and pancreas (28,76-78). Other 
findings include mild brain atrophy and involvement of 
the cerebellum (MPC sign), loss of Purkinje neuronal 
cells, spongiosis of the deep cerebellar white matter, 
Bergman gliosis, and swollen axons (51,77). Neurons of 
heterozygous female mice with the premutation showed 
shorter dendritic lengths and fewer branches between 7 
and 21 days compared with wild-type (WT) littermates, 
display lower viability, and express elevated stress 
protein levels (79). Furthermore altered embryonic 
neocortical development (80) and abnormal spontaneous 
clustered calcium bursts (81,82) with glutamate 
hyper-responsiveness have been described (81); thus 
suggesting a clear state of neuronal vulnerability. 
 Mitochondrial abnormalities have also been found 
in PMC (83,84) and recently a decreased immune 
responses and immune dysregulation in both humans 

and mice with the premutation were described (85). It is 
unknown how the premutation alters mitochondrial and 
immunological responses, and if these abnormalities 
contribute to FXTAS and other associations found 
in PMC, such as, autoimmune and rheumatologic 
disorders (47). 

8. Treatment of FXTAS

There are as yet no effective targeted therapies for 
the treatment of FXTAS; however there are many 
medications that have been use to ameliorate some 
of the symptoms associated to FXTAS. However the 
use of these medications rely on very few small trials 
and case studies that showed improvements only in 
some individuals (86,87). The only clinical targeted 
trial for FXTAS utilized memantine (NMDA receptor 
antagonist, FDA approved for treatment of moderate 
to severe Alzheimer's disease since 2003). Memantine 
was thought to selectively block the excitotoxic effects 
associated with abnormal transmission of glutamate 
while allowing for the physiological transmission 
associated with normal cell functioning. In this 
randomized, double-blind, placebo-controlled trail, 94 
individuals aged 34-80 years with probable or possible 
FXTAS diagnosis and clinical stages 1-5 were enrolled 
for one year. Primary outcome measures were the 
Behavioral Dyscontrol Scale (BDS) score and CATSYS 
intention tremor severity. Intention-to-treat analysis 
showed no improvement with respect to intention 
tremor severity nor BDS scores (88). However of 
those (94 participants) 41 completed longitudinal ERP 
studies (20 placebo/21 memantine group) and the use 
of this compound showed improvements on cued-recall 
memory and N400 repetition effect amplitude; thus 
suggest that the treatment may have benefits on verbal 
memory (88). More frequent mild adverse events were 
observed in the placebo group, while more frequent 
moderate adverse events occurred in the memantine 
group and these included dizziness, headache and 
constipation amongst others. As mention before other 
treatments are directed to symptom reduction. For 
anxiety and depression selective serotonin and selective 
norepinephrine reuptake inhibitors are effective (5,86) 
as well as psychotherapy (31). Atypical antipsychotics 
are effective in individuals with psychosis and agitation 

Table 3. Clinical staging of FXTAS

Stage

0
1
2
3
4
5
6

Clinical Description

Normal functions
Subtle or questionable signs such as subtle tremor or mild balance problems and no interference with ADLs
Clear tremor and/or balance problems and minor interference with ADLs
Moderate tremor and/or balance problems and occasional falls and significant interference with ADLs
Severe tremor and/or balance problems with at least intermittent use of a cane or a walker
The use of a wheelchair on a daily basis
Bedridden

ADL: activities of daily living.
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(89). Propranolol and primidone may improve tremor 
(86,87,90). Deep brain stimulation has shown benefits 
for tremor and in few cases for ataxia (91); however the 
general outcome for FXTAS patients was poor (92). As 
previously mentioned the premutation causes neuronal 
susceptibility and therefore other treatments for PMC 
focus on preventive measures, such as, avoidance of 
toxins including smoking alcohol and some types of 
anesthesia, healthy diet and vitamins/antioxidants 
supplementation, exercise and cognitive training, and 
stress reduction (93). 

9. Current research on FXTAS

Phenotype studies aim to determine early signs of 
disease for early diagnosis and treatment as well as to 
determine timing and reversibility of the pathological 
mechanism. A preliminary study shows that oculomotor 
inhibitory control impairments (measured by eye 
tracking) might precede FXTAS, and thus indicating 
elevated risk for motor impairment associated with 
FXTAS (94). Magnetic resonance imaging is useful 
for non-invasive testing; functional MRI for brain 
activation during cognitive tasks, and structural MRI 
for quantification of volume changes, morphometry, 
and white/gray matter integrity and connectivity. In 
fact, verbal working memory in male and female 
premutation carriers (95) has been associated with 
reduced activation in the right inferior frontal cortex 
and left premotor cortex in both asymptomatic 
premutation carriers and carriers with FXTAS. Reduced 
activation was found in right premotor/inferior frontal 
cortex in individuals with FXTAS. Individuals with 
FXTAS also showed diffuse gray matter loss most 
prominent in areas important for working memory, 
including prefrontal cortex, anterior cingulate 
cortex, and cerebellum (96). Molecular studies aim 
to determine the early molecular mechanisms that 
induce neurodegeneration including cellular stress and 
toxicity. The mechanism for inclusion formation and 
identification the intranuclear inclusions proteins are 
also a fertile area of research. Current targeted treatment 
research focuses on reversing the neurobiological 
abnormali t ies in FXTAS with pharmaceutical 
compounds (e.g. allopregnanolone) and other molecular 
mechanisms of disease modification (oligonucleotide-
based therapies to reduce FMR1 mRNA) as well as 
designing a mechanism that will allow blood-brain 
cross-transportation of pharmacological compounds.
 Animal models for the fragile X premutation have 
been developed to understand the molecular mechanism 
of FXTAS (97). Mice models have shown increased 
FMR1 mRNA levels, decreased FMRP levels and 
ubiquitin-positive intranuclear inclusions (98). In 
addition, mice models showed neurocognitive deficits 
in spatial and temporal memory processes, impaired 
motor performance, and anxiety traits (99). In order to 

determine timing and reversibility of disease and their 
associate molecular mechanism, a doxycycline-inducible 
premutation mouse has been created (R. Hukema, 
Abstracts of the 1st Premutation Meeting, Perugia, 
Italy, 2013). Animal models are crucial in the testing of 
preclinical therapies, for instance the acute administration 
of the neurosteroid allopregnanolone mitigated cluster 
burst firing in mouse hippocampal premutation-neurons 
and identified allopregnanolone as a potential targeted 
treatment for premutation disorders (100).

10. FXTAS

The identification of the FMR1 gene has led to 
characterization of risk alleles and recently there are 
a variety of disorders associated with the premutation 
in children and adults. Although FXTAS is described 
to occur in premutation carriers only, recent reports 
identified FXTAS in individuals with grey zone/
intermediate alleles (101,102), as well as in individuals 
with unmethylated full-mutation alleles (103) and 
in a few patients with full-mutation/premutation 
mosaicism (104). These findings increase the number 
of patients that are at risk for FXTAS with elevated 
FMR1 mRNA besides only those with the premutation. 
The description of FXTAS as an intractable disorder, 
has led to expansion of recommendations for genetic 
testing in adults which in turn have caused ethical 
concerns for the identification of individuals at risk 
of FXTAS. These is a concern especially in males 
with the suspicion of the premutation because males 
do not have increased risk of having children with 
fragile X syndrome, but have about a 40% chances 
to develop FXTAS, if they are determined to be 
premutation carriers. However, the documentation of 
the premutation is helpful for both males and females 
because these individuals can be treated for many of the 
childhood and adult problems related to the premutation 
such as anxiety, depression, ADHD, hypertension, 
hypothyroidism, fibromyalgia, sleep apnea, and can 
be counseled to avoid toxicity from the environment 
that has the potential to bring on FXTAS at an earlier 
age. The identification of radiological signs of FXTAS 
is used by clinicians to make a clinical diagnosis of 
FXTAS; however, the phenotypic variability and 
progression of FXTAS should be taken in consideration 
as many adults will not meet all clinical criteria until 
advanced age, particularly females. There are also 
radiological and clinical gender variations, while males 
are more prone to develop dementia, females are more 
likely to develop other autoimmune-related disorders. 
The phenotypic variability of the premutation is 
partially explain by CGG expansion size, FMR1 mRNA 
levels, decrease FMRP and mosaicism; however, 
other mechanisms are now being consider including 
protein synthesis alterations, non-AUG translation, 
and antisense transcription, as well as, additional 
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genomic variants and environmental exposures (5). 
Further genotype to phenotype studies are necessary to 
determine the relative contribution of these pathological 
processes in this complex disorder. Many FDA 
approved medications have shown to improve some of 
the symptoms of FXTAS; however there are limited 
clinical trials and none that can prove the efficacy 
of these treatments. It is crucial to undertake further 
clinical trials of drugs that anecdotally have shown 
positive results in individuals with FXTAS. There has 
been only one targeted clinical trial for FXTAS and 
there is an urgent need to identify more compounds that 
target the pathogenesis of FXTAS, which in theory may 
reverse, treat or prevent the development of FXTAS.
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1. Introduction

Fragile X Syndrome (FXS) is the leading inherited 
cause of intellectual disability and autism. A hallmark 
feature of FXS is delay in receptive and expressive 
language development and this is often the presenting 
sign of FXS in early childhood (1,2). Symptoms 
of anxiety, attention deficit hyperactivity disorder 
(ADHD), and hyperarousal with sensory stimuli are all 
typical of children with FXS (3-8).
 FXS is a monogenic disorder caused by an 
expanded CGG repeat in the 5' untranslated region of 
the FMR1, located on the long arm of chromosome X 
(9). It is considered normal to have between 5-40 CGG 
repeats in FMR1. The premutation is characterized by 
55 to 200 CGG repeats and a full mutation occurs at 
> 200 CGG repeats (10). In the full mutation, FMR1 
becomes methylated, resulting in significantly reduced 
or absent levels of the FMR1 protein (FMRP). FMRP 
is a selective, inhibitory, mRNA-binding protein that 
regulates the translation of mRNAs into their respective 
proteins (11). It is expressed throughout the body, but 

is especially critical in neuronal soma and dendrites 
because most of the proteins that are regulated by 
FMRP are important for synaptic plasticity (12,13). 
Since FMRP expression depends on age, the lack 
of FMRP in FXS is particularly disruptive in early 
development, when synapse formation is especially 
dynamic (14). 
 As a result of the loss of FMRP expression, many 
neurochemical pathways are disrupted in patients with 
FXS (15,16). For example, there is up-regulation of the 
metabotropic glutamate receptor 5 (mGluR5) pathway 
leading to enhanced long term depression (LTD), down-
regulation of GABA pathways (17), and dysregulation 
of dopamine and cholinergic pathways (12,18). Here we 
discuss evidence that serotonin (5-hydroxytryptamine, 
5-HT) represents another potential target for mechanistic 
therapy. 

2. Serotonin in FXS mouse models

Findings in animal models of FXS provide evidence 
that serotonin can be specifically helpful in treating the 
dysregulated pathways in FXS. 
 One of the pathways known to be dysregulated in 
FXS is the mGluR-regulated LTD pathway (11,19,20). 
In the mGluR-mediated LTD mechanism, stimulation 
of postsynaptic group 1 (Gp1) mGluRs at a dendrite 
rapidly evokes local protein synthesis that results in the 

Summary Fragile X Syndrome (FXS) is a trinucleotide repeat disorder that results in the silencing of 
the Fragile X Mental Retardation 1 gene (FMR1), leading to a lack of the FMR1 protein 
(FMRP). FMRP is an mRNA-binding protein that regulates the translation of hundreds of 
mRNAs important for synaptic plasticity. Several of these pathways have been identified 
and have guided the development of targeted treatments for FXS. Here we present evidence 
that serotonin is dysregulated in FXS and treatment with the selective serotonin reuptake 
inhibitor (SSRI) sertraline may be beneficial for individuals with FXS, particularly in early 
childhood.

Keywords: Fragile X Syndrome, fragile X mental retardation protein, selective serotonin reuptake 
inhibitors, sertraline

DOI: 10.5582/irdr.2014.01027Review



www.irdrjournal.com

Intractable & Rare Diseases Research. 2014; 3(4):110-117.

internalization of AMPA receptors (AMPARs), such as 
GluA1 (GluR-A) from the synapse. Among the proteins 
synthesized upon stimulation at the dendrite is FMRP. 
FMRP is an mRNA translation repressor and serves as 
the negative feedback to the increased protein synthesis 
(20). Without FMRP, such as in FXS, evoked protein 
synthesis runs unchecked, leading to excessive AMPAR 
internalization and, thus, exaggerated LTD in response 
to a stimulus. Using hippocampal slices from the FXS 
mouse model, Costa et al. (21) showed that stimulation 
of postsynaptic 5-HT7 serotonin receptors successfully 
ameliorates the exaggerated mGluR5-mediated synaptic 
LTD in FXS to wild-type levels.
 GluA1-dependent long-term potentiation (LTP) is 
also disrupted in FXS (22), and can be partly corrected 
by serotonin. Lim et al. (23) showed this with an 
experiment measuring synaptic GluA1 delivery in 
hippocampal slice preparations from Fmr1 knockout 
(KO) and wild-type mice. Although GluA1 delivery to 
the synapse is normally impaired in the FXS model, 
application of a 5HT2B-R agonist restored about 20% of 
GluA1 synaptic delivery. 

3. Serotonin in patients with FXS and autism

There is limited research concerning serotonin levels in 
people with FXS. One study done by Hessl et al. (24) 
found that genetic polymorphisms in the gene encoding 
serotonin reuptake transporter protein correlated with 
levels of aggression in patients with FXS. Those 
individuals with polymorphisms conferring higher 
reuptake (a 44 base pair insertion in the promoter region 
at 17q11.2 of the 5-HTT receptor) correspond to a more 
aggressive FXS phenotype.
 Although there have been few studies specifically in 
the FXS population, significant research has been done 
in children with autism. This research is still highly 
relevant since there is significant overlap between 
autism and FXS (3,25). An analysis of de novo gene 
mutations resulting in autism showed that 30-50% of 
autism genes are regulated by or associated with FMRP 
(26). As previously mentioned, FXS is the leading 
monogenetic cause of autism. One third of patients with 
FXS are diagnosed with autism and another third meet 
criteria for autism spectrum disorder (ASD) (25,27). 
Children with FXS that did not meet ASD criteria still 
had autistic features such as poor eye contact, hand 
flapping or hand stereotypies, in addition to shyness or 
social anxiety (5,27).
 There is ample evidence that normal serotonin 
synthesis is disrupted in patients with autism. For 
example, it has been shown that metabolism of 
tryptophan, the amino acid precursor to serotonin, is 
decreased in patients with autism (28). Additionally, 
studies in which adults with autism were deprived 
of tryptophan found that this diet worsened autistic 
symptoms (29). Tryptophan metabolism occurs in 

mitochondria and follows one of two pathways, 
leading to either the creation of serotonin/melatonin or 
kynurenin-quinolinic acid. Both pathways also lead to 
nicotinamide adenine dinucleotide (NADH) production. 
In experiments done by Boccuto et al. (28), comparisons 
between lymphoblastoid cells from patients with 
autism and controls revealed a uniting abnormality in 
the cells from patients with autism: reduced ability to 
process tryptophan. The origin of autism in the study 
patients included both syndromal and non-syndromal 
cases. Subsequent genetic analysis revealed abnormally 
low levels of key enzymes involved in mitochondrial 
tryptophan metabolism (Figure 1). These proteins 
include SLCA5 and SLC7A8 (enzymes involved in 
tryptophan transport into mitochondria), WARS2 
(tryptophanyl tRNA synthetase), TPH2 (tryptophan 
hydroxylase 2, rate-limiting enzyme in the serotonin/
melatonin pathway inside mitochondria), as well as 
TDO2 (tryptophan 2,3-dioxygenase) and AADAT 
(aminoadipate aminotransferase), enzymes involved in 
the kynurenin-quinoloinic acid pathway. It is interesting 
to note that children with FXS often have sleeping 
difficulties (30), which may be related to dysfunction 
of melatonin due to ineffective tryptophan processing. 
Therefore, is not surprising that patients with FXS 
usually show improvements in their sleep patterns with 
melatonin treatment (31). 
 Children with ASD also have a significantly 
different capacity for serotonin production compared to 
children without ASD during development. Serotonin 
levels are normally relatively high in the developing 
brain compared to adults. This peak appears between 
ages 2-5 years, when brain serotonin synthesis capacity 
reaches twice the levels found in the adult brain (32). 
After age 5, synthesis ability declines until age 15, 
when it reaches adult levels. Children with autism, 
however, do not reach the same 2-5 year old peak. 
Instead, their serotonin levels increase slowly, resulting 
in a relatively low level during the 2-5 year old period 
and ending up at a higher level in adulthood (32). This 
suggests that therapeutic intervention with an SSRI may 
be more beneficial during this critical window in early 
childhood as opposed to later in life for children with 
autism, including those with FXS.
 Children with ASD also display abnormal cortical 
asymmetry in serotonin synthesis capacity (33). 
Notably, the specific pattern of asymmetry correlates 
with symptom presentation. For example, children with 
decreased left-sided serotonin synthesis have a higher 
rate of language impairment.

4. Serotonin and up-regulation of brain derived 
neurotropic factor (BDNF)

An intricate relationship seems to exist between 
serotonin and BDNF. Treatment with an SSRI can up-
regulate BDNF levels (34,35), and BDNF can also 
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 Though much attention is given to mature neurons, 
FMRP regulates proliferation and differentiation of 
adult neural stem/progenitor cells (51) and neurogenesis 
in early development (52). For example, FMRP is 
thought to play a crucial role in maintenance of radial 
glial cells (RGCs) in the neocortex during early 
development (53). Without FMRP, the RGC population 
is significantly reduced due to cell fate change from 
RGC to intermediate progenitor cell. In newborn 
neurons derived from neural progenitor cells lacking 
FMRP, basal levels of BDNF mRNA are increased 
(52,54). Levels of catalytic TrkB (tropomyosin-related 
kinase B), a receptor for BDNF, are also higher in the 
murine Fmr1 KO neural progenitor cells (54). This 
enhanced BDNF/TrkB signaling in FMRP-deficient 
progenitor cells likely contributes to the abnormal 
neural differentiation and migration patterns seen in the 
Fmr1 KO (43), such as the premature differentiation of 
neural progenitor cells which gives rise to neurons with 
small soma and short neurites (43). In addition, neural 
progenitor cells that lack FMRP also give rise to less 
glia (47). 
 However, the profile of BDNF expression appears 

stimulate serotonin synthesis (36). 
 BDNF is  a  cr i t ical  component  of  synaptic 
maturation, synaptic plasticity, and neurogenesis (37-
40). FXS can be classified as a disorder of the synapse 
(14,41,42). FMRP is highly expressed in neurons and 
plays an important role in dendritic plasticity (41,43-45). 
Without FMRP, dendrites do not develop normally. A 
hallmark morphological finding in patients with FXS is 
an abundance of immature dendritic spines (11,41,46-
48). Dendritic-dependent changes involved in long-term 
depression and potentiation are impaired, contributing 
to the cognitive deficits seen in these patients. Given 
the synaptic abnormalities seen in patients with FXS, 
BDNF has been a focus of many FXS-related studies. 
 Serum levels of BDNF mRNA and BDNF protein 
are overall lower in patients with autism (49) and serum 
BDNF mRNA levels may positively correlate with IQ 
in patients with ASD (49). A crucial experiment by 
Lauterborn et al. (44) showed that impaired LTP (long 
term potentiation) in the Fmr1-KO mouse model is 
rescued when hippocampal slices are bathed in BDNF. 
This experiment evidenced that BDNF is affected by 
the absence of FMRP (47,50).

Figure 1. Tryptophan pathways in patients with autism. The figure illustrates the main intracellular pathways involving 
tryptophan. The microarray dataset of Boccuto et al. 2013 (consisting of patients with autism) are in blue, genes with increased 
expression are in red. Genes with statistically significant reduction of expression in patients with autism are underlined. (Note: 
Figure reprinted and legend adapted from "Decreased tryptophan metabolism in patients with autism spectrum disorders" by 
Boccuto L, et al., 2013, Molecular autism, 4(1), page 7. Copyright 2013 by BioMed Central. Reprinted with permission.)
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to change significantly with age. In early mouse brain 
development, hippocampal expression of BDNF in 
the KO is still increased compared to WT (wild type) 
(54,55). However, by age 3-4 months, BDNF expression 
in the murine hippocampus is reduced compared to 
WT (52,55). Defects in hippocampal neurogenesis lead 
to cognitive deficits in the adult Fmr1 KO (56) and 
correlates with the hippocampal neurogenesis defects 
observed in individuals with FXS (57).
 Experiments performed by Uutela et al. (55) 
provide mixed evidence as to whether BDNF is 
beneficial in the FXS mouse model. When Fmr1 
KO mice were crossed with Bdnf+/- mice, the double 
transgenic mice showed roughly half of WT BDNF 
levels and deficits in water maze learning, contextual 
fear learning, and hippocampal neurogenesis. However, 
the double transgenic mice also showed improvements 
in locomotor activity, sensorimotor learning, and startle 
response in comparison to Fmr1 KO mice. Additionally, 
histological analysis of cultured neural progenitor cells 
showed that the double transgenic mice did not have 
the immature and abundant dendrites characteristically 
found in Fmr1 KO mice (55).
 These mixed findings may be partially explained 
by considering the changing profile of BDNF levels 
during different stages of development. The double 
transgenic mice had relatively lower BDNF levels 
during early development when BDNF may be 
detrimentally overactive due to absence of normal 
reciprocal regulation by FMRP. In contrast, BDNF 
levels in the double transgenics are low in adulthood 
when its presence could be beneficial, as evidenced by 
Lauterborn et al. (44). It is unclear when in childhood 
BDNF stimulation would be beneficial and whether this 
is a critical mechanism for improvement with sertraline 
treatment.

5. SSRI treatment in FXS

Effective targeted treatments for FXS are being 
researched with a focus on mechanism-based 
approaches (58,59). These include agents targeting 
mGluR5, GABAA, the endocannabinoid system, and 
other signaling pathways such as insulin growth factor 
(IGF), MAPK/Erk, and BDNF (12,18,19,60-63). 
Symptom-based treatments currently include stimulants, 
antidepressants (e.g. selective serotonin reuptake 
inhibitors; SSRIs), and atypical antipsychotics which 
are useful in treating symptoms such as hyperactivity, 
anxiety, and aggression (59,64). SSRIs are sometimes 
prescribed for patients with FXS to relieve symptoms 
of anxiety (59). Anxiety is a classic feature in FXS 
throughout life and particularly in childhood (4,5). 
Recent evidence shows that SSRI treatment may confer 
non-classical benefits to patients with FXS as well (65). 
A core symptom in this patient population is difficulty 
in language acquisition and communication (1). 

Individuals may have abnormal speech rate, stuttering 
or exaggerated repetition, and a limited vocabulary. 
Oftentimes, patients fixate on a particular topic, word, 
or phrase and perseverate on these phrases or topics. 
Treatment with an SSRI may additionally benefit 
communication abilities in patients with FXS.
 In  2011 ,  Winarn i  e t  a l .  (65 )  per formed a 
retrospective chart review of 45 children with FXS, 
aged 12-50 months. This analysis found that children 
with FXS who received the SSRI sertraline had 
significantly improved receptive and expressive 
language development compared to those not treated 
with sertraline. A subsequent controlled trial of 
sertraline in children with FXS ages 24 to 68 months 
is currently enrolling at the UC Davis MIND Institute 
(ClinicalTrials.gov identifier: NCT01474746) to assess 
the effects of sertraline in three general domains: early 
language/developmental abilities, sensory processing 
abilities, and symptoms relating to cognition, anxiety, 
and ASD.

6. Unique aspects of sertraline among the SSRIs

Clinical results and theoretical knowledge support 
the usefulness of SSRIs in treating patients with FXS 
(65). Sertraline may be relatively more effective than 
other SSRIs for this patient population. Sertraline has 
been approved by the Food and Drug Administration 
(FDA) as a treatment for OCD in children (age 6-17 
years old) and main side effects are worsening of mood 
and/or behavior, irritability, aggression and suicidal 
thoughts. Other side effects include drowsiness, fatigue, 
dizziness, and sleep problems. 

6.1. Dopamine reuptake inhibition 

There  i s  evidence  tha t  ser t ra l ine  has  unique 
neurochemical properties when compared to other 
SSRIs. Along with paroxetine, sertraline is considered 
one of the most potent inhibitors of serotonin reuptake 
(66). Additionally, sertraline significantly prevents 
dopamine reuptake (66). In a study done by Kitaichi 
et al. (67), researchers compared extracellular levels 
of serotonin, dopamine, and noradrenaline found in 
the prefrontal cortex, nucleus accumbens, and striatum 
of rats following administration of therapeutic doses 
of sertraline, fluvoxamine, or paroxetine. All agents 
successfully up-regulated serotonin in these areas, but 
sertraline was the only agent that also up-regulated 
dopamine, specifically in the nucleus accumbens and 
striatum.
 Dopamine dysregulation is implicated in many 
neuropsychiatric conditions (66). Irregularities in 
dopamine production and/or dopamine receptors are 
linked to disorders such as autism, schizophrenia, 
depression, ADHD, and substance abuse. Abnormally 
high or low levels of dopamine negatively impact 
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dendritic morphology (22,68,69). In a thorough review 
of the impact of dopamine on brain disorders and 
neurodevelopment, Money and Stanwood (68) state 
that examination of all the evidence points to dopamine 
playing "a crucial role…in formation and stabilization 
of synaptic connections in the striatum and frontal 
cortex".
 In vitro experiments done by Wang et al. (70) 
showed that dopamine receptor-mediated synaptic 
modulation is impaired in cells lacking FMRP. 
Normally, D1 stimulation leads to changes in AMPA 
receptor expression and phosphorylation necessary 
for LTP, both of which were significantly blunted in 
prefrontal cortical neurons derived from Fmr1 KO 
mice. This deficit was reversed when FMRP expression 
was induced in the cells via transfection. Furthermore, 
Wang et al. (70) showed that treating Fmr1-/- mice 
with a dopamine agonist specifically ameliorated the 
hyperactive behavior normally seen in these mice.
 Further evidence of the importance of dopamine in 
FXS comes from the study discussed earlier by Lim 
et al. (23) that showed treatment of FXS hippocampal 
preparations with serotonin partially ameliorated in 
vitro LTP deficits by 20%. The researchers actually 
experimented further to discover that a particular low 
dose combination of a 5HT2B-R agonist and D1 receptor 
agonist restored GluA1-mediated LTP in hippocampal 
slices to 100% (wild-type levels). This finding was 
subsequently tested in vivo, yielding impressive results. 
Fmr1 KO mice were treated with either 5HT, the 
dopamine agonist, or both. The mice then underwent 
an associative learning task. Though there was mild 
improvement in each of the monotherapy groups, only 
the FXS mice receiving the combined 5HT and D1 
cocktail were able to perform at WT levels, far superior 
to the abilities of their untreated FXS counterparts (23).

6.2. Neuroprotective effects

Taler et al. (35) analyzed in vitro cell (SHSY5Y 
human neuroblastoma cells) survival after 24 hours 
of antidepressant drug exposure including multiple 
SSRIs. Results showed that a low dose preparation 
(1-10 microgram) of sertraline or its derivative 
desmethylsertraline was the most beneficial SSRI in 
terms of cell survival. Compared to controls, sertraline 
improved cell survival rate by 50%. Paroxetine was 
the second most effective compound for cell survival, 
increasing viability by 40%. The rest of the drug 
candidates, which included fluoxetine, citalopram, 
reboxetine, venlafaxine, clomipramine, and mirtazapine 
showed no significant effects on cell survival. In a 
follow-up experiment, Taler et al. (35) compared the 
effects of sertraline on neuroblastoma cells exposed 
to stress (in the form of FCS-deprived media) vs. non-
stressed conditions. The results showed that sertraline 
and desmethylsertraline administration during stress 

conditions increase cell survival, suggesting that 
sertraline has a neuroprotective effect (Figure 2).
 In subsequent in-vivo experiments by Taler et al. 
(35), four to six week old wild-type mice treated with 
1mg/kg daily sertraline for 3 weeks showed improved 
performance on the Morris Water Maze (MWM) 
reacquisition phase. Older mice (12-14 months) 
performance on the reacquisition phase improved 
most when dosed at 10 mg/kg/day. Interestingly, 
no differences were observed in treated mice in the 
acquisition and extinction phases of the MWM. 
Compared to controls, sertraline-treated mice had 
increased BDNF expression in the hippocampus 
when dosed at 5 and 10 mg/kg/day. Additionally, 
phosphorylated ERK and Bcl-2 expression was up-
regulated in young mice receiving 5 mg/kg/day, though 
not in older mice at any of the measured dosages. It is 
noteworthy that the more beneficial results occurred in 
the younger mice, lending more support to the theory 
that early intervention with sertraline may be more 
beneficial.

7. Conclusion

Serotonin enhances synaptic modulation and refinement 
(71). There is evidence that during the peak of 
synaptogenesis in brain development (birth to 5 years 
of life), there is a reduction of serotonin synthesis 
(28,32). In mice and humans, SSRIs can upregulate 

Figure 2. Neurochemical effects of sertraline therapy 
in FXS. FMRP, BDNF, serotonin, and dopamine are all 
dysregulated in patients with FXS. Abnormal levels of FMRP 
and BDNF in FXS cause atypical dendritic morphology, 
LTD, LTP, and neurogenesis, all of which have been shown to 
normalize with serotonin application. Serotonin treatment may 
also directly benefit patients with FXS as an anxiolytic and by 
ameliorating defects in LTD, LTP and synaptic architecture. 
Sertraline may be an especially beneficial SSRI agent for FXS 
treatment because of its neurprotective effects and positive 
impact on language development. In addition, sertraline 
prevents reuptake of dopamine, another neurotransmitter 
thought to be dysregulated in FXS. Increasing dopamine 
levels in patients with FXS may help to improve hyperactivity 
and irregularities in LTP and dendritic morphology.
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neurogenesis in the hippocampus. Pertinent to FXS, 
serotonin levels are likely affected by the lack of FMRP 
(24,28,33). Furthermore, other proteins that can be 
influenced by serotonin deficiency, such as BDNF, may 
contribute to the neurobiological deficits observed in 
FXS (34-36). 
 SSRIs are considered a symptomatic treatment 
for patients with FXS, but they may be working in a 
targeted manner as well. We have discussed evidence 
here that increasing serotonergic signaling can 
potentially rescue the neurobiology that is disrupted in 
FXS by upregulating levels of BDNF, increasing the 
number of GluA1 receptors and GlutA1-LTP, increasing 
levels of serotonin in the synapse, and by enhancing the 
dopaminergic system. These mechanisms are thought 
to improve synaptic plasticity and brain development. 
Other effects may include balancing cortical asymmetry 
of serotonin and overall neuroprotective effects. 
 Among the SSRIs, sertraline may be especially 
beneficial to patients with FXS due to its potency 
and ability to block the reuptake of dopamine, a 
neurotransmitter known to be dysregulated in FXS 
(71) and other neuropsychiatric conditions (68). 
Experiments done on murine FXS models show 
that treatment benefits vary depending on age (14). 
Serotonin and BDNF profiles change over time, and 
may be pathologically low in early development. 
Therefore, the timing of therapy with serotonergic 
agents may be extremely important in patients with 
FXS. Similarly, the consequences of FMRP expression 
depend on age (14). This is consistent with evidence 
from a retrospective chart review done by Winarni et 
al. (65), which found that one to four year old children 
with FXS who received sertraline showed improved 
receptive and expressive language outcomes. It is 
critical that this therapeutic opportunity is further 
investigated with controlled trials, as it could lead to 
significant improvements in symptoms, cognition, and 
quality of life for patients with FXS.
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1. Introduction

Fragile X Syndrome (FXS) is one of the most commonly 
inherited forms of intellectual disability and monogenic 
causes of autism spectrum disorder (ASD) (1,2). 
Prevalence estimates for FXS are approximately 1:4,000 
males (3,4) and 1:8,000 females (5), although a recent 
epidemiological meta-analysis reports FXS prevalence to 
be lower (1:7,143 males and 1:11,111 females) (6). This 
neurodevelopmental disorder is caused by a CGG repeat 
mutation on chromosome Xq27.3 (7), expanding the 
5'-non-coding region of the fragile X mental retardation 
1 (FMR1) gene. The FMR1 gene encodes the fragile 
X mental retardation protein (FMRP) which regulates 
protein expression via its interaction with mRNA (8), 

associating with up to 4% of mRNA in the mammalian 
brain (9,10). The full mutation (> 200 CGG repeats) 
leads to hypermethylation of the FMR1 promoter, an 
epigenetic mechanism which transcriptionally silences 
FMR1 and reduces FMRP levels (11). FMRP is widely 
expressed throughout the body, but is enriched in neurons 
and testes (12-14). FMRP's binding targets include 
several synaptic proteins crucial for neurotransmission 
and structure (15,16), including postsynaptic density-95 
(PSD-95), AMPA receptor subunits GluR1 and GluR2, 
and microtubule-associated protein 1b (MAP1b) (17-
22), and further, binds to its own Fmr1 mRNA (23-
25). Through its association with target mRNAs, 
FMRP is thought to assist in the localization, transport, 
stabilization and translational regulation of the mRNA 
for these proteins (10,16,26-29). Loss of FMRP is also 
associated with elevated mTOR signaling (30), which is 
vital to cellular growth, energy metabolism and protein 
synthesis (31).
 Due to the X-linked nature of its inheritance, FXS 
phenotypes are heterogeneous and vary considerably 
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FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive 
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between males and females (32,33). In general, 
females typically display milder symptoms than males 
due to compensation by the second non-affected 
X chromosome (34). Common characteristics of 
individuals with FXS include intellectual impairment, 
increased anxiety, hyperarousal to stimuli and unusual 
physical features (e.g., an elongated face, flat feet and 
hyperextendable finger joints) (35). In individuals 
carrying the full mutation, the severity of the physical 
and behavioral phenotypes correlates with lower 
levels of FMRP (36). To be noted, there are limitations 
in FMRP quantification, as many techniques utilize 
immunohistochemistry to label peripheral white blood 
cells (37,38) or hair roots (39,40) with monoclonal 
antibodies to indirectly measure FMRP levels. These 
methods cannot quantify FMRP protein levels, which 
is essential for understanding how the degree of FMRP 
loss relates to FXS clinical phenotypes. Development 
of additional detection methods, such as quantitative 
sandwich enzyme-linked immunosorbent assay (ELISA) 
(41), time-resolved Förster's resonance energy transfer 
immunoassay (42) and semi-quantitative western blot 
protein analysis (43), has provided additional tools for 
the detection and quantification of FMRP protein levels, 
allowing for further investigation of the relationship 
between FMRP and FXS phenotypes.
 Animal models of FXS have been developed 
in various species, such as the Drosophila fruit fly, 
zebrafish, mouse, and rat (44-48). Much effort has 
focused on the characterization of mouse models of FXS, 
in particular the Fmr1 knockout (KO) mouse. The Fmr1 
KO mouse was created and initially characterized by 
the Dutch-Belgian Fragile X Consortium (48). The first 
Fmr1 KO mice were generated using embryonic stem 
cells and C57BL/6J (B6) wildtype mice, a commonly 
used inbred mouse strain. A targeting vector containing a 
disrupted Fmr1 DNA sequence with an insertion in exon 
5 (the knockout allele) was inserted into embryonic stem 
cells and transferred into pseudo-pregnant female mice. 
These founder mice yielded offspring that were crossed 
with B6 mice to generate experimental animals. Fmr1 
KO mice harboring this mutation did not produce FMRP 
protein, but did possess detectable levels of Fmr1 mRNA 
(49). Subsequently, these mice were bred into different 
background strains, such as the FVB inbred mouse strain. 
Since its initial description in 1994, many labs continue 
to use Fmr1 KO mice to further understand the outcomes 
of functional FMRP loss in mice, and how it relates to 
FXS clinical symptoms. The goal of this review is to 
outline the progress to date, and discuss which areas will 
benefit from future research.

2. The Fmr1 KO mouse

2.1. Physiology of the Fmr1 KO Mouse

Males with FXS tend to possess certain dysmorphic 

features, such as prominent ears, narrow face, loose 
joints, smooth skin and macroorchidism (enlarged 
testes) (35,50). The presence of macroorchidism is due 
to the loss of FMRP, which is highly expressed in the 
testes (13). Fmr1 KO mice have significantly heavier 
testes than wildtype controls, but normal structural 
morphology (48,51). This is likely due to an increase 
in the proliferative activity of Sertoli cells found in the 
seminiferous tubules, which increases the number of 
germs cells in the testicles, and therefore, their weight 
(51). Other physical features, such as core temperature 
and body weight, and neurological reflexes did not 
differ between genotypes, suggesting otherwise normal 
gross physical and neural development (48,52). The 
presence of enlarged testes mirrors the macroorchidism 
found in male individuals with FXS, and therefore 
lends face validity to the Fmr1 KO mouse model in this 
aspect of the clinical disorder.

2.2. Dendritic spine morphology and neurotransmission

FMRP is an RNA-binding protein that is enriched in 
neurons, particularly in the cell body, dendrites and 
postsynaptic spines (14,28,53,54). Dendritic spines, 
small protrusions along neuronal dendrites, are sites 
of excitatory synaptic input, which contain receptors 
and signaling molecules that are essential for synaptic 
neurotransmission (55). Postmortem analysis of human 
cortical tissue revealed that individuals with FXS have 
an increased density of dendritic spines relative to 
controls, with a majority of spines appearing elongated 
and immature (56-63). Directly analogous deficits in 
spine number and morphology have been found in 
Fmr1 KO mice bred onto both B6 and FVB genetic 
backgrounds (64-67), providing additional face validity 
to the Fmr1 KO mouse model. Developmental analysis 
of the barrel cortex of young (1 week old) Fmr1 KO 
mice revealed an increase in spine density and length 
in mutant mice compared to controls, which was not 
present at 4 weeks of age (65). This absence of spine 
abnormalities at 4 weeks of age was also detected in 
the developing somatosensory cortex of Fmr1 KO mice 
by the Greenough laboratory (63). In addition, in the 
same study, adult Fmr1 KO mice exhibited increased 
density of immature, thin spines compared to controls 
(63). Therefore, there may be a period of synaptic 
development during which dendritic spine morphology 
briefly normalizes in the absence of FMRP, but is not 
sustained. In other brain regions, similar structural 
deficits in dendritic spines were seen at older ages of 
Fmr1 KO mice. For example, Fmr1 KO mice possess 
greater densities of elongated spines in the visual cortex 
at 16 weeks of age compared to wildtype controls (66). 
These data suggest that FMRP expression is necessary 
for the development of normal dendritic spine 
morphology, and that the loss of FMRP negatively 
impacts the physical structure of the synapse.
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and vestibular stimuli) as measured by electrodermal 
responses (96). Electrophysiological recordings in 
the auditory cortex demonstrated enhanced responses 
to auditory tones in Fmr1 KO mice, indicating 
that auditory neurons of Fmr1 KO mice are hyper-
responsive to stimuli (97). These data are consistent 
with the increased responses to pure tones seen in 
individuals with FXS (98,99). 
 Prepulse inhibition (PPI), a measure of sensorimotor 
gating, occurs when a weak pre-stimulus attenuates 
the response to a sudden strong stimulus (pulse) within 
100 milliseconds (100,101). Deficits in PPI have been 
noted in FXS, correlating with other clinical FXS 
features, such as IQ severity and attention (102-104). 
Studies of Fmr1 KO mice have yielded mixed results. 
The majority of studies indicate Fmr1 KO mice exhibit 
enhanced PPI and reduced startle (89,90,105-107); 
this is a significant effect but in the opposite direction 
to the results in human FXS. In contrast, others report 
impaired PPI in Fmr1 KO mice (108), increased startle 
responses to low intensity auditory stimuli (109), or 
minimal or no PPI differences between genotypes 
(49,91,109,110). As has been previously discussed, 
Fmr1 KO behavior phenotypes are influenced by 
genetic background (89,107). Explanations for the 
divergent findings on PPI in Fmr1 mice reported by 
different laboratories include use of different murine 
genetic backgrounds and differences in testing protocols 
(111). Of greater concern are the contrasting phenotypes 
between the majority of PPI studies in the Fmr1 KO 
mouse and FXS human studies. These data suggest 
that while certain aspects of FXS are recapitulated in 
the Fmr1 KO mouse, other clinical features are not 
reproduced.

2.4. Attention and hyperactivity

Individuals with FXS are hyperactive and have 
difficulties with attention and impulse control (35,112-
115). Subjects with FXS performed better than learning 
disabled controls on selective attention, but the subjects 
with FXS had deficits similar to the learning disabled 
controls in sustained attention and working memory 
(116). Further, studies have found that FXS confers 
more drastic attentional deficits as task difficulty 
increases, such that individuals with FXS have more 
difficulty inhibiting/switching responses (117). In light 
of clinical FXS symptomology (i.e., its comorbidity 
with ADHD), Fmr1 KO mice were evaluated in the 
five-choice serial reaction time task, considered the 
gold standard task for attention and impulsivity in 
rodents (118). Although Fmr1 KO mice were impaired 
in select phases of a visual-spatial discrimination 
task, they did not differ from wildtype controls in 
the five-choice serial reaction time task (119,120). 
Specifically, Krueger and colleagues found that Fmr1 
KO mice took longer to reach criterion during the 

 As a negative regulator of mRNA translation, FMRP 
influences protein synthesis and can therefore affect the 
synaptic components located in dendritic spines. Long 
term potentiation (LTP) and depression (LTD) are the 
long lasting enhancement and reduction, respectively, 
of signal transduction between two neuronal synapses 
(68,69). These activity-dependent cellular events rely 
on translational regulation of synaptic proteins in order 
to rapidly respond to synaptic activity and maintain 
cognitive function. Analyses of LTP and LTD, which 
are considered to represent electrophysiological 
correlates of learning and memory (69), have revealed 
abnormalities in the neurotransmission of mice 
lacking the Fmr1 gene. LTD, which is dependent on 
protein synthesis and metabotropic glutamate receptor 
(mGluR) activation, was enhanced in Fmr1 KO 
hippocampus and hippocampal neuron cultures (70-
72). LTP, along with decreased AMPA receptor surface 
expression and selective increases in NMDA receptor 
subunit protein expression, was impaired in Fmr1 KO 
mice (17,21,71,73,74), although these findings are 
inconsistent (17,21,61,70,74,75). Fmr1 KO2 mice, 
another Fmr1 null mouse model that lacks both FMRP 
protein and Fmr1 RNA due to deletion of the Fmr1 
promoter and first exon (76), also displays abnormal 
synaptic plasticity. In the Fmr1 KO2 hippocampus, a 
lower ratio of AMPA to NMDA receptors was detected 
early in development compared to wildtype controls 
(77). The upregulation of NMDA receptors in the 
Fmr1 KO2 hippocampus resulted in increased NMDA 
receptor-dependent LTP. These data demonstrate that 
lack of Fmr1 produces alterations in normal synaptic 
activity, which likely contributes to the FXS phenotype. 
Given the importance of FMRP for the regulation of 
proteins integral to synaptic function, it is unsurprising 
that loss of FMRP results in abnormalities in the 
structure and functionality of neuronal synapses.

2.3. Seizure and stimuli hypersensitivity

Approximately 10-20% of individuals with FXS with 
full mutations exhibit childhood seizures (78-81). 
Seizures associated with FXS are infrequent, are often 
partial, and are typically controlled with medications 
(82,83). Fmr1 KO mice have not been reported to 
display spontaneous seizures, but are more susceptible 
to audiogenic seizures, induced by exposure to a 125 
decibel, high-intensity siren (48,81,84-93). Audiogenic 
seizure vulnerability in Fmr1 KO mice may reflect 
seizure susceptibly in FXS, although audiogenic seizure 
severity in Fmr1 KO mice varied in degree depending 
on age and background strain (86,91,94,95).
 Individuals with FXS report hyperarousal and 
heightened sensitivity to sensory stimuli (7). For 
example, subjects with FXS had stronger and more 
frequent responses and reduced habituation to sensory 
stimulations (e.g., olfactory, auditory, visual, tactile, 
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second phase of training (> 50% correct of > 15 trials 
for 2 consecutive days), when nose-pokes in a signaled 
nose-poke hole were correct and non-signaled nose-
pokes were incorrect, but this effect did not replicate 
in subsequent studies (121). Sidorov and colleagues 
instead demonstrated augmented extinction of nose-
poke responses in Fmr1 KO mice. In another series of 
attention tasks, Fmr1 KO mice had impaired inhibitory 
control, exhibiting a higher rate of premature responses 
than wildtype mice (122). This was associated with 
changes in task contingencies, suggesting inhibitory 
control in Fmr1 KO mice may be affected by stress 
or novelty. Additionally, Fmr1 KO performance was 
disrupted by olfactory distracters, with mutant mice 
making more inaccurate responses during distracter 
presentations (122). A consistent behavioral finding in 
Fmr1 KO mice is their increased locomotor activity 
compared to wildtype controls in the open field test 
(48,52,89,90,123-130). It is important to note that the 
robust hyperactivity phenotype seen in Fmr1 KO mice 
could be a confounding factor for the assessment of 
sustained attention, given that the general activity of 
mutant mice may interfere with task engagement.

2.5. Repetitive behaviors

Perseveration and repetitive behaviors, such as hand 
flapping, are associated with the full mutation in FXS 
(33,35,131,132). In the five-choice serial reaction 
time task, Fmr1 KO mice demonstrated heightened 
perseveration and responding during novel rule 
acquisition, which normalized with training (119). Fmr1 
KO mice also exhibited higher levels of self-grooming, 
a repetitive behavior, than wildtype controls (89,133). 
Additionally, Fmr1 KO mice buried more marbles in 
the marble burying test (93,107,124), a measure of 
repetitive behavior (134). However, marble burying was 
not significantly different between genotypes in some 
studies (91,110,135). Genotype differences in marble 
burying in Fmr1 KO mice appear to be dependent on 
background strain (107). Overall, these data suggest 
that Fmr1 KO mice show signs of repetitive behaviors, 
which parallels FXS clinical features.

2.6. Anxiety

Anxiety is one of the core behavioral features of FXS, 
in both children and adults (35,132,136). The evaluation 
of anxiety-related behaviors in Fmr1 KO mice has 
generated inconsistent results, ranging from less 
anxiety-like scores in Fmr1 mutant mice to no genotype 
differences to increased anxiety-like scores on several 
tasks. The elevated plus-maze is an anxiety-related task 
that utilizes a mouse's preference for dark spaces by 
evaluating the amount of time and entries made into 
dark, enclosed arms as compared to open arm runways 
(137,138). Fmr1 KO mice spent significantly more 

time in the open arms and less time in the closed arms, 
but also traveled more throughout the maze, which may 
indicate higher general locomotion (52,84,129,130). 
In the zero-maze, Fmr1 KO mice spent more time in 
the open quadrants (130,139). In the open field, the 
time or distance spent in the center of the open arena is 
sometimes considered an indicator for anxiety-related 
behavior, since wildtype mice prefer to remain in the 
perimeter when introduced to a novel environment. 
Fmr1 KO mice spent a greater portion of their distance 
traveled in the center area of the open field compared 
to wildtype control mice (49,52,123,129). Together, 
these publications indicated a profile of lower anxiety-
related behaviors in Fmr1 KO mice, which is contrary 
to the FXS clinical phenotype. In contrast, others 
have shown that Fmr1 KO mice exhibited increased 
anxiety-like responses in the mirrored chamber task 
(123), avoidance of the center of the open field (128) 
and reduced open arm time in the elevated plus-
maze (140). In the light↔dark exploration test, an 
anxiety-related task in which a subject mouse typically 
spends more time in a dark chamber than a well-lit 
chamber (141), and in which number of transitions 
between compartments is increased by anxiolytic 
drug treatments (142), Fmr1 KO mice made more 
transitions between the chambers (90,107), but did not 
differ from wildtype mice in time spent in the light 
chamber. In some studies, no genotype differences were 
detected in Fmr1 KO mice as compared to wildtype 
littermates in the elevated plus-maze (49,109,127), in 
light↔dark exploration (107), or on center time in the 
open field (91,93,135). These differing results could 
potentially be explained by differences in testing and 
housing conditions, genetic background, and age at 
testing, as these factors can influence performance on 
conflict tests in mice (143). Given the sensitive nature 
of anxiety-related assays, it is imperative that similar 
testing protocols are used across labs to determine the 
robustness of the Fmr1 KO genotype on anxiety-related 
phenotypes.

2.7. Sociability and social communication

Along with increased anxiety, individuals with FXS 
are often diagnosed with social phobia and avoidance 
(35,132,144,145). In the three-chambered sociability 
task, a subject mouse is evaluated for its exploration 
of a novel social stimulus (e.g., novel mouse) versus 
a novel object stimulus (146). Wildtype mice will 
preferentially explore a novel mouse when given the 
choice between a novel mouse and a novel object with 
no social valence. Results using the three-chambered 
social approach with Fmr1 KO mice to evaluate 
their sociability vary in the literature. For example, 
several groups report that Fmr1 KO mice have normal 
sociability, preferring to explore the novel mouse over 
the novel object (89,130,133,139). Similarly, direct 
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social interactions with freely moving juvenile mice of 
the same sex, or in adult male subjects interacting with 
estrus females, were reported as normal (89,147) or 
even enhanced, as evidence by greater sniffing duration 
and interaction time of a partner mouse by Fmr1 KO 
mice (123,148). In contrast, other research suggests that 
the sociability of Fmr1 KO mice is abnormal, such that 
mutants do not exhibit a preference for a novel mouse 
over an object (126) and have reduced sniffing duration 
of the novel mouse compared to wildtype mice (133). 
Furthermore, additional studies demonstrate Fmr1 KO 
mice spent less time engaging in affiliative behaviors, 
such as nose-to-nose sniffing, nose-to-anogenital 
sniffing and crawling over or under the partner's 
body during social interaction with a female mouse 
(89). Social scores appeared to be dependent on the 
background strain into which the Fmr1 mutation had 
been bred (107,149). Although individuals with FXS 
are described as having social interaction deficits and 
social phobia, it has been suggested that these social 
deficits are due to hyperarousal and heightened anxiety 
rather than a lack of social understanding (i.e., the 
"Fragile X handshake" in which an initial gesture, such 
as brief eye contact or social remark, is paired with 
active gaze avoidance (150,151)). The rodent models 
described here may differentially account for these 
factors. 
 Children with FXS are delayed in their language 
development, but this is associated with other cognitive 
delays (152-154). Rodent pup ultrasonic vocalizations 
are considered to be biologically meaningful (155,156), 
as they are emitted in young pups during stressful 
situations (157) and elicit retrieval behaviors by the 
parents. Adult male mice and rats emit ultrasonic 
vocalizations during interaction with females and in 
response to urine from estrus females (158). Studies 
focusing on ultrasonic vocalizations of Fmr1 KO 
mice have been inconsistent in their findings. While 
there are reports of increases (107) or no differences 
in the number of calls of Fmr1 mutant and wildtype 
mice (89), other labs observe a significant reduction in 
vocalizations in Fmr1 KO mice (124,147), including 
call-type specific deficits (159). Together, data suggest 
that while Fmr1 KO mice exhibit some aspects of 
normal sociability, they exhibit some abnormalities in 
social behavior and communication.

2.8. Cognitive deficits

A majority of individuals with FXS exhibit intellectual 
impairment, which can range from mild to severe. 
IQ scores decrease over time, which is likely a result 
of delayed development in individuals with FXS 
(160,161). Novel approaches to intelligence testing 
have found that traditional IQ tests can be modified to 
reveal subtle differences within this select population 
(162). Starting with the Dutch-Belgium Fragile X 

Consortium, many researchers have conducted thorough 
characterizations of Fmr1 KO mice to compare their 
phenotypes to the intellectual disabilities displayed by 
individuals with FXS. One cognitive test conducted 
very early on in the development of the Fmr1 KO 
mouse model was passive avoidance, a task that utilizes 
association of a footshock with a dark chamber to assess 
memory for the aversive event. Passive avoidance 
learning relies on the dorsal hippocampus (163) but also 
requires the amygdala (164). Dependence of passive 
avoidance performance on the dorsal hippocampus 
and amygdala would predict that animals deficient in 
the function of either or both of these brain regions 
would be impaired in this task, but the data are mixed. 
While amygdala volumes are not generally affected 
in subjects with FXS, affected individuals with FXS 
have difficulty with emotion regulation. A recent study 
revealed that individuals with FXS demonstrated less 
activation of the amygdala while viewing fearful faces 
than neurotypical subjects (165). Passive avoidance 
learning was not altered in Fmr1 KO mice in some 
studies (48,93,135,166) but was disrupted in others 
(90-92,129,167,168). Interestingly, passive avoidance 
extinction may occur more rapidly in Fmr1 KO mice 
(92,166), which is consistent with augmented extinction 
in Fmr1 KO mice in other assays (121). It may be 
that cognitive deficits combined with augmented fear 
responses are working in opposition, explaining some 
of the disparate results in fear-associated tasks such as 
passive avoidance.
 Fear conditioning studies were used to further 
elucidate whether other specific cognitive domains are 
disrupted in Fmr1 KO mice. Fear conditioning can be 
parsed out into several distinct subtypes that rely on 
the amygdala, hippocampus, and prefrontal cortex to 
different extents. Contextual fear conditioning requires 
both the amygdala and hippocampus, while delay-
cued fear conditioning requires the amygdala but not 
the hippocampus (169-172). Contextual and delay-
cued fear conditioning can be acquired during the same 
training session and assessed in independent settings 
to reveal hippocampus-dependent and hippocampus-
independent memory effects, respectively. In amydgala-
dependent delay-cued fear conditioning, a deficit was 
reported in Fmr1 KO mice (75,90), but other studies 
did not observe this effect (173-175). In hippocampus-
dependent contextual fear conditioning, one report 
indicated a deficit (75) and another identified a context-
discrimination deficit (176); other studies did not detect 
genotype differences in contextual fear conditioning 
in Fmr1 KO mice (52,173,175). Trace-cued fear 
conditioning requires hippocampus and prefrontal 
cortex (177,178) and may or may not be independent 
of the amygdala (179,180). Trace fear conditioning, a 
more difficult task in which the tone and shock are not 
simultaneous during training, indicated that Fmr1 KO 
mice may have deficits (74) but others showed that 
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Fmr1 KO mice appeared equal or superior to wildtype 
mice in the acquisition of trace fear conditioning (106).
 The hippocampus is larger in individuals with FXS 
(181,182) and functional deficits in the hippocampal 
domain in subjects with FXS (183,184) would suggest 
that any fear task requiring the hippocampus would 
show a deficit. The FXS association with larger 
hippocampal volumes (182) and/or subjectively 
assessed hippocampal morphology differences in 
affected individuals (185) may or may not relate to 
deficits in hippocampal-dependent memory. Further, 
while individuals with FXS have normal amygdala and 
prefrontal cortex volumes, they have altered behavioral 
responses to tasks requiring the amygdala (165), 
frontal lobe (186) and prefrontal cortex (187). This 
may represent another instance in which behavioral 
tasks that require functional circuits (i.e., the limbic 
system) may lead to variable results when multiple 
neural substrates within that system are affected (i.e., 
prefrontal cortex, amygdala, and hippocampus). 
 Decades of research characterizing the cognitive 
abilities of individuals with FXS predict that deficits in 
a FXS mouse model should occur in short-term (visual) 
memory, visual-spatial abilities, sequential information 
processing, executive function and attention (188-
191). The Morris water maze, a hippocampus-mediated 
task, was used to evaluate Fmr1 KO visual-spatial 
abilities to determine whether subject mice could 
locate a submerged platform using spatial cues (48). 
The study did reveal subtle genotype differences, 
such that Fmr1 KO performance was significantly 
worse in reversal (i.e., a change in platform location) 
than wildtype littermates, specifically during the first 
trials after location-switching. This may indicate 
difficulty in changing reinforcement contingencies. 
Interestingly, however, there were no performance 
differences in the probe trial when the platform was 
removed, suggesting no impairment in visual-spatial 
memory. Kooy and colleagues (192) added additional 
animals (22 KO and 17 wildtype mice) to the original 
Consortium study (14 KO and 11 wildtype mice) and 
pooled these results. The larger sample sizes revealed 
similar results on Morris water maze reversal, with the 
additional finding of a genotype effect during the initial 
spatial memory acquisition. However, no significant 
probe trial differences were observed, indicating that 
while there are some differences in Morris water maze 
performance, they may not be functionally relevant 
to the FXS condition. Despite the Fmr1 KO deficit 
occurring in reversal trials, a similar reversal learning 
task conducted in an E-shaped maze revealed no such 
genotype difference. However, while Fmr1 KO mice 
did not show a persistent perseveration phenotype 
across cognitive modalities (i.e., impaired reversal in 
Morris water maze, but not E-shaped maze (192)), 
a cross-shaped maze replicated the Morris water 
maze acquisition deficit (173,175). These acquisition 

deficits have been replicated (106), but not consistently 
(75,174). Similarly, deficits in reversal learning in Fmr1 
KO mice were replicated in some studies (106,193), 
but not all (75). Based on the variable results across 
laboratories, the spatial learning deficits identified in 
earlier studies may require very specific conditions 
in order to reproduce these results. In the majority 
of published studies, however, probe trial analyses 
revealed no differences between Fmr1 KO and wildtype 
mice, indicating limited and selective deficits in spatial 
learning and memory (48,75,174,192,193). However, 
some probe trial differences have been observed in 
Fmr1 KO mice (106). Some researchers have observed 
task-specific impairments in spatial cognition rather 
than global impairments (183,184), although global 
cognitive impairments in individuals with FXS have 
also been reported (160-162). The mild deficits in 
spatial learning and memory observed in Fmr1 KO 
mice may support the idea of task-specific cognitive 
deficits and not global dysfunction.
 The mixed results in cognitive assays to date has 
initiated a debate as to whether the Fmr1 KO mouse is 
a sufficient model of FXS in humans, since the primary 
symptom of intellectual impairment is not prominent in 
the mutant mouse model. In an effort to find cognitive 
tasks with more ethological relevance, recent studies 
have included novel object recognition as well as 
spatial and temporal order object recognition tasks. 
Novel object recognition, which is typically conducted 
as a short-term memory task, relies on rodents' natural 
tendency to investigate novelty. A mouse is placed 
into an arena with two identical copies of an object, 
where their species-typical response is to explore 
and investigate the objects. After a certain interval, 
subject mice are returned to the arena with one familiar 
object and a novel object. If the mouse recognizes the 
previously seen object, it preferentially investigates 
the novel object. Fmr1 KO mice have a deficit in this 
task (194,195), but as with the previously discussed 
cognitive domains, this impairment has not always been 
replicated (49). A recent study identified hippocampus-
dependent spatial object recognition deficits in Fmr1 
KO mice (195), such that Fmr1 mutant mice did not 
preferentially explore an object when it was moved to a 
new location.
 Working memory deficits have been suggested 
as being a core feature of FXS (196). In several 
human clinical studies, individuals with FXS had low 
performance on specific working memory tasks under 
low-control conditions (i.e., verbal and visual-spatial 
(116,185,197,198), or visual-spatial alone (199)). A 
recent study identified working memory deficits under 
high-control conditions (i.e., a dual task request; for 
example, selective word recall only when a stimulus 
with particular properties was presented) in individuals 
with FXS that were specific to another component 
of working memory, central executive functioning 
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(200). Further, while central executive processing was 
impaired in individuals with FXS, both verbal and 
visual-spatial working memory modalities were intact. 
While these studies and others (183,184) suggest that 
human cognition deficits in FXS are task-specific and 
not global in nature, additional research has revealed 
impairments in all components of working memory in 
FXS (i.e., visual-spatial sketchpad, central executive, 
and phonological loop) (198). Similarly, a study in 
young boys with FXS revealed working memory 
deficits regardless of task complexity and modality 
(196). The differing results on specific versus general 
working memory deficits in FXS may be due to task-
specific differences (e.g., the type of stimuli used), as 
individuals with FXS have more accurate recall with 
familiar stimuli rather than abstract material (189). 
In rodents, working memory tasks, such as olfactory 
working memory and radial arm maze, can rely 
heavily on other brain regions (i.e., olfactory bulb or 
hippocampus, respectively). In several tasks, including 
the radial arm maze, Fmr1 KO mice did not show 
robust working memory deficits (49), although others 
have identified a working memory impairment in Fmr1 
KO mice in a serial reversal version of the Morris water 
maze (106). It is possible that the olfactory bulb and 
hippocampus in Fmr1 KO mice are compensating for 
deficiencies in working memory in some of these tasks. 
Therefore, identification of a behavioral task that is less 
reliant on other brain regions is necessary to determine 
if Fmr1 KO mice exhibit a reliable working memory 
impairment, as this would add further face validity to 
the model. 

3. Conclusions

The development of FXS animal models has furthered 
our understanding of several molecular and synaptic 
def ici ts  underlying FXS, including abnormal 
dendritic spine morphology, protein dysregulation 
and neurotransmission. In addition, animal models 
provide an opportunity to evaluate novel drug targets to 
ameliorate FXS symptoms. Indeed, gene therapy (124) 
and pharmacological compounds such as minocycline 
(147,201), mGluR5 antagonists (202), arbaclofen 
(203), ganaxolone (84), lovastatin (204) and lithium 
(195,205) have shown efficacy in ameliorating some of 
the phenotypes detected in Fmr1 KO mice. Thorough 
evaluation of the Fmr1 KO mouse on numerous genetic 
backgrounds across a multitude of labs indicates that 
several phenotypes, such as neuronal morphology and 
hyperactivity, are robust and consistent across studies. 
In contrast, several aspects of cognition, anxiety and 
social phenotypes of Fmr1 KO mice are highly variable 
across published reports (Table 1). Additionally, many 
reported Fmr1 KO phenotypes are in direct opposition 
to the clinical FXS phenotype, such as a lack of robust 
cognitive impairments, enhanced prepulse inhibition 

and reduced anxiety in the mouse model. The Fmr1 
KO mouse was generated by genetically modifying the 
Fmr1 DNA sequence to reduce FMRP protein levels. 
This is contrast to the human FXS condition, which 
is generally caused by expansion of the FMR1 gene 
region and subsequent promoter hypermethylation, 
although there are rare instances of FXS being due to 
point mutations and partial or complete deletion of 
the FMR1 gene (206-208). Given that FXS clinical 
symptomology is associated with lower levels of 
FMRP, one would expect that complete disruption of 
Fmr1 and resulting loss of FMRP would recapitulate 
the most severe clinical phenotypes of FXS. However, 
this is not the case for the Fmr1 KO mouse model, 
which may limit its utility. The mechanistic differences 
between the mouse model and the human genotype 
underlying loss of FMRP, i.e. deletion and expansion, 
respectively, could be a contributing factor to the 
phenotypic differences seen between Fmr1 KO mice 
and individuals with FXS. Therefore, in order to more 
fully recapitulate the clinical features of FXS, such as 
severe intellectual disability and social anxiety, it will 
be important to explore other mechanisms associated 
with FXS in combination, such as CGG expansion and 
hypermethylation of the Fmr1 gene, as well as loss of 
FMRP protein.
 It is possible that the variance seen in the Fmr1 
KO phenotype reflects the range of FXS clinical 
symptoms, rather than being due to subtle differences 
in methodology or genetic background influence 
alone. The variability in the strength and direction of 
phenotypic differences observed in the Fmr1 KO mouse 
may at first seem unsettling and worthy of discarding 
the model altogether. However, the heterogeneity of 
FXS is such that affected individuals exhibit a range of 
cognitive impairments, with affected males presenting 
with mild to severe cognitive symptoms (162,209). 
This poses a challenge for FXS animal models, but it 
also might be considered a strength. If the Fmr1 KO 
model is expected to primarily encompass only the 
most severe symptoms of FXS, then more is expected 
of the model than exists in the human syndrome. 
Instead, if the model is looked at through a clinician's 
lens, one would expect a heterogeneous population with 
a portion of the animals showing severe impairments 
with others displaying mild to moderate effects or none 
at all. Indeed, it is a challenge to think of how variable 
FXS symptomology in both the human syndrome 
and the animal model can be leveraged toward the 
identification of successful treatments for individuals 
with FXS. Despite these challenges, pharmacological 
interventions using the Fmr1  KO mouse have 
demonstrated predictive validity for this model, as 
results from several drug studies in Fmr1 KO mice 
parallel findings from human FXS open-label treatment 
trials (e.g. minocycline (210) and lithium (211)). As 
research of the molecular and behavioral dysfunction in 
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Table 1. Summary of behavioral and cognitive phenotypes of Fmr1 knockout mice (↓ = decrease; ↑ = increase; ↔ = no 
change)

Domain

Cognition

Anxiety

Communication

Social

General Activity

Fragile X Syndrome
Clinical Phenotype

Intellectual disability; 
w o r k i n g  m e m o r y 
deficits

Increased anxiety

Delayed language 
development

Social phobia
and avoidance

Hyperactivity

          Phenotype

Impaired performance;
augmented extinction

No genotype differences

Deficits in delay-cued
and contextua fear
conditioning; deficits
in trace fear conditioning

No genotype differences

Impaired performance during
acquisition and/or reversal 

No genotype differences 

Impaired acquisition of a
cross-shaped maze

No genotype differences
in radial arm maze

No genotype differences
in E-shaped maze

No preference for novel object

No genotype differences 

Reduced open arm time

Increased open arm and
open quadrant time

No genotype differences

Increased transitions

No genotype differences

Avoidance of center area 

More distance traveled in
the center area

No genotype differences

Increased anxiety responses

Reduction in vocalizations

Increased vocalizations

No genotype differences

No preference for novel mouse; 
social preference with reduced 
sniffing of novel mouse 
compared to wildtype mice

No genotype differences

Reduction in affiliative
behaviors

Greater sniffing duration
and interaction time
with partner mouse

No genotype differences

Increased locomotor activity

     References

90-92,129,166-168 

48,93,135,166 

74, 75, 90, 176

52,106,173-175

48,106,192,193

49,75,174

173,175

49

192

194,195

49

140

52,84,129,130,139

49,109,127

90,107

107

128

49,52,123,129

91,93,135

123

124,147,159

107

89

126,133

89,130,133,139

89

123,148 

89,147

48,52,89,90,123-130

Direction

↓

↔

↓

↔

↓

↔

↓

↔

↔

↓

↔

↑

↓

↔

↓

↔

↑

↓

↔

↑

↓

↑

↔

↓

↔

↓

↑

↔

↑

Rodent Assay

Passive avoidance

Fear conditioning

Morris water maze

Maze learning

Reversal task

Novel object recognition

Elevated plus-maze
and zero-maze

Light↔dark
exploration test

Center area of open field

Mirrored chamber task

Ultrasonic vocalizations

Three-chambered 
sociability task

Direct social interactions
with juvenile or with
estrus female mice

Open field

Fmr1 Knockout Mouse 

(To continue)
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the Fmr1 KO model accumulates, our understanding of 
how these molecular differences translate into observed 
behavioral dysfunction will continue to increase, 
providing a platform for the future identification of 
targeted FXS treatments.
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1. Introduction

A variety of disorders are associated with mutations 
in the fragile X mental retardation 1 (FMR1) gene 
including fragile X syndrome (FXS) caused by a full 
mutation (> 200 CGG repeats in the 5' untranslated 
region of FMR1 gene) leading to absence or deficiency 
of the FMR1 protein (FMRP) and premutation (55 to 
200 CGG repeats) disorders characterized by elevation 
of FMR1 mRNA 2 to 8 times normal. Although these 2 
types of disorders are distinct in their phenotypes and 
molecular pathology, recent studies have demonstrated 
significant overlap that has been fertile areas for 
research. The term fragile X spectrum disorder (FXSD) 

has been developed to emphasize the continuity of 
clinical involvement from the gray zone (45 to 54 
repeats) throughout the premutation and into the full 
mutation range. FMR1 mutations are dynamic in that 
they usually expand between generations particularly 
when passed on by a female to her children when it can 
expand from a premutation to a full mutation (1) .
 FXS was the first identified disorder in this spectrum 
and it was discovered in association with the fragile 
site of the X chromosome in two brothers in 1969 by 
Lubs and colleagues (2). In retrospect the first X- linked 
pedigree of intellectual disability (XLID) reported by 
Martin and Bell in 1949 turned out to be a fragile X 
pedigree when tested by the FMR1 DNA test that was 
developed after the discovery of FMR1 in 1991 (3,4). 
The fragile site was characterized by not only the CGG 
expansion to > 200 repeats, but also methylation of the 
cytosine bases leading to silencing of translation and 
little or no production of FMR1 mRNA and FMRP. Since 
FMRP is a critical protein for regulation of translation 

Summary The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental 
retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene 
typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic 
mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) 
and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in 
the general population with approximately 1 in 130-250 females and 1 in 250-810 males, 
whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 
4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most 
common monogenetic cause of  inherited intellectual disability (ID) and autism  (FXS), the 
most common genetic form of ovarian failure, the fragile X-associated primary ovarian 
insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome 
(FXTAS, premutation). The premutation can also cause developmental problems including 
ASD and ADHD especially in boys and psychopathology including anxiety and depression 
in children and adults. Some premutation carriers can have a deficit of FMRP and some 
unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered 
a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should 
be used to include the wide range of overlapping phenotypes observed in affected individuals 
with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children 
with FXSD.
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for hundreds of mRNAs into their respective proteins, 
most of them involved with synaptic plasticity (5), the 
lack or severe deficiency of FMRP almost always leads 
to intellectual deficits as seen in males with FXS. In 
females with FXS the normal X produces FMRP so only 
25% will have an IQ below 70 and an additional 50% 
will have an IQ in the borderline range (6). 
 Premutation disorders were first identified with the 
discovery of an increased incidence of early menopause 
(prior to the age of 40) in female carriers in 1991 (7). 
This has been confirmed by multiple investigators 
and has now been named fragile X-associated primary 
ovarian insufficiency (FXPOI) (8). Approximately 20% 
of female carriers have FXPOI, although the rate varies 
in a curvilinear fashion with CGG repeat number; the 
greatest prevalence of FXPOI is between 70 to 100 
CGG repeats (9).
 The next premutation disorder identified was 
the fragile X-associated tremor ataxia syndrome 
(10,11) seen initially in older male carriers (> 50 
years) involving an intention tremor and cerebellar 
gait ataxia in addition to autonomic dysfunction, 
Parkinsonism, neuropathy, memory and executive 
function deficits followed by cognitive decline. 
This is a neurodegenerative disorder that occurs in 
approximately 40% of men and 16% of women with 
the premutation (12,13). FXTAS is hypothesized 
to be caused by mRNA toxicity from the elevated 
FMR1 mRNA levels (14) leading to the production of 
pathognomonic inclusion formation in neurons and 
astrocytes throughout the CNS, peripheral nervous 
system and even in some organs such as the adrenals, 
heart and pancreas (15).
 Currently there are numerous additional medical, 
neurological and psychiatric problems associated 
with the premutation both with and without FXTAS 
including depression (16), anxiety (17,18) , migraines 
(19) hypertension (20), immune mediated disorders 
including fibromyalgia and hypothyroidism (21,22), 
sleep apnea (23), restless legs syndrome (RLS) 
(24), and neuropathy (25,26) often associated with 
chronic pain symptoms. Since the prevalence of the 
premutation is much higher (1 in 130-250 females 
and 1 in 250-810 males) (27) than those with the full 
mutation (1 in 4,000-7,000) the impact of multiple 
medical and neurological problems in premutation 
carriers is far more significant in the population than 
the full mutation (28,29). The association of other 
disorders in adults with the premutation led to multiple 
studies in children and here we present a review of the 
manifestations in children with FXSD.

2. Full mutation - Fragile X syndrome

The FMR1 gene, which codes for the fragile X 
mental retardation protein (FMRP, a major negative 
translation regulator), is located at Xp27.3 from base 

pair 146,993,469 to base pair 147,032,647 (GRCh37/
hg19). The FMR1 gene is highly expressed in the brain 
and testis (30). FXS is associated with a variety of 
neurological, cognitive and behavioral deficits, and 
less frequent dysmorphic features. Males with the full 
mutation and full methylation have little to no FMR1 
mRNA and little to no FMRP contributing to the 
clinical phenotype of FXS. The range of involvement in 
females is determined by the X-chromosome activation/
inactivation ratio (the percentage of cells with active 
normal X chromosome) because this will determine 
how much FMRP is produced by the normal X 
chromosome depending on whether it is active or not.

2.1. Physical findings

The physical phenotype and dysmorphology of FXS 
include signs of a connective tissue disorder such as a 
long and narrow face, large and prominent ears, a high 
arched palate, hyperextensible finger joints, pectus 
excavatum, flat feet, soft skin and mitral valve prolapse. 
Other features include low muscle tone, and pubertal 
macroorchidism (31,32). Noteworthy approximately 
30% of young children with FXS will not have 
obvious dysmorphic features; the physical features are 
associated with the FMRP deficits. The most evident 
effects of lower levels of FMRP in both males and 
females are prominent ears and hypermobility of the 
metacarpal-phalangeal (MP) joints (33,34). In males 
FMRP deficits are associated with a narrow face and 
large ears, while in females the FMRP deficits are 
associated with increased ear prominence and jaw 
length (35). In about 5-10% of children with FXS a 
Prader-Willi phenotype is observed including severe 
obesity, hyperphagia, hypogonadism and in some 
cases delayed puberty (36,37) (Figure 1). The reduced 
expression of the cytoplasmic interacting FMR1 protein 
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Figure 1. A female adolescent with FXS Prader-Willi-like 
phenotype.
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30% of females with FXS have impaired speech (47). 
 In general, overall IQ declines with age in those 
with FXS because of the deficits in abstract reasoning 
which cannot keep up with the intellectual growth 
seen in typical children and adolescents (48). The 
adaptive skills also decline in FXS from adolescence 
into adulthood (49). This emphasizes the importance of 
early intervention with intensive behavioral/cognitive 
programs and targeted treatments early in life to 
improve or prevent cognitive decline.

2.4. Behavioral phenotype

FXS accounts for approximately 2-5% of all individuals 
diagnosed with FXS accounts for approximately 2-5% 
of all individuals diagnosed with ASD (50) . In FXS 
about 60% of males have an ASD (51,52). About 80% 
of males and 30% of females with FXS have symptoms 
of attention deficit hyperactivity disorder (ADHD) (53). 
Sleep disturbances, such as difficulty falling asleep and/
or interrupted sleep are also characteristic of individuals 
with FXS (54). Altered sleep patterns and dysregulated 
melatonin profiles were found in 13 boys with fragile 
X when compare with age-matched normal controls 
(55). Results showed greater variability in total sleep 
time, difficulty in sleep maintenance, and significantly 
greater nocturnal melatonin production in the boys with 
FXS.
 A hallmark feature of FXS that can also occur 
in some premutation carriers is social anxiety. 
This behavior leads to the characteristic "Fragile X 
handshake"; where the individuals may shake the 
interviewer's hand or acknowledge his/her presence 
but will avoid eye contact until the interviewer looks 
away (56). Additional behavioral features include 
stereotypies such as hand-flapping and hand-biting, 
shyness, perseveration, mood instability, aggression 
and impaired speech (52). Cross-sectional analyses 
suggest that dimensions of problem behavior, anxiety, 
and hyperactivity are age-related; thus, age should 
serve as an important control variable in behavioral 
studies in FXS. Measures of anxiety, attention, and 
hyperactivity are highly associated with other behavior 
problems (29). There is evidence that autism scores 
decreased with time, particularly in communication 
and social aspects of adaptive behavior (57). However, 
emotional symptoms, behavioral difficulties, problems 
with peers and social behaviors may remain relatively 
stable over time (58). These trajectories may be 
associated with variations of FMRP, which in turn can 
be related to epigenetic changes, but there have been 
no large longitudinal studies that assess the molecular 
variations and behavior/cognitive correlations. Further 
longitudinal studies are necessary to assess the 
developmental trajectories of FXS across the lifetime 
and relate the outcomes to molecular and environmental 
factors.

gene (CYFIP, located at 15q11-13) is believed to be the 
cause of this phenotype (37).

2.2. Neurological disorders

In a national survey of caregivers of individuals 
with FXS (1,394 individuals), 14% of males and 
6% of females were reported to have seizures (38). 
The seizures were easily treated, often partial and 
infrequent; however they were associated with more 
severe developmental and behavioral problems (38). 
Remarkably those with seizures are more likely to 
have ASD. The seizures may add to the severity of the 
phenotype because animal studies of early life seizures 
have shown that the FMRP leaves the dendrites and 
migrates to the perinuclear area during seizures, thereby 
depleting the dendrites of the regulatory effects of 
FMRP (39). Hypersensitivity to audiogenic stimuli 
and hyperarousal are also characteristics of children 
with FXS. These children have enhanced amplitude 
to sensory stimuli measured by electrodermal studies 
and a lack of habituation to repetitive stimuli (35). In 
addition, MEG studies also demonstrate an enhanced 
electromagnetic response to stimuli (36).

2.3. Cognition deficits

Male and female individuals with FXS present a wide 
range of learning disabilities in a context of normal, 
borderline IQ or mild to severe ID. The average IQ 
of males with the full mutation is 40 (40). Intellectual 
and developmental disability occurs in 85% of males 
and 25% of females. The level of FMRP correlates 
directly with IQ (41); males with the full mutation 
with unmethylated or only partially methylated alleles 
produce more FMRP than those with fully methylated 
alleles (35). The higher levels of FMRP explain the 
typically higher IQ (above 70) in high-functioning 
individuals with FXS. Similarly those individuals with 
"size-mosaicism" (full mutation plus premutation, 
gray zone or normal alleles) have a higher IQ than 
those without mosaicism. Therefore full mutation 
cells have a deficit of FMRP and the premutation cells 
produce an excess of FMR1 mRNA, leading to mRNA 
toxicity but relatively normal levels of FMRP ("dual 
mutation effects", pathological involvement from 
two different mechanisms). Higher rates of psychotic 
thinking have been observed in individuals with this 
type of mosaicism leading to dual mutation effects 
(42). In females with FXS the normal X typically 
produces 25% to 50% of the normal FMRP level and 
these females have IQ scores that range from normal 
to moderate intellectual disability (6). Working and 
short-term memory (43), executive function (44), visual 
memory, visual-spatial processing (45) and verbal 
deficits are common in FXS (verbal comprehension and 
vocabulary) (46). Almost all males and approximately 
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2.5. Genotypes

The unstable dynamic FMR1 mutation can result in 
"size-mosaicism", but cells of individuals who have 
only one size allele may also show different patterns 
of methylation (none, partial, and full methylation) 
referred as "methylation mosaicism". Some individuals 
may have the presence of three or more populations 
of cells with different size-alleles and methylation-
patterns. Therefore, the complex molecular mechanism 
and multiple possibilities of genotypes results in the 
wide variety of clinical characteristics of individuals 
with FXS and may also relate to different responses to 
standard and targeted treatments but this has not been 
well studied (59). 

2.6. Neurobiology 

At the cellular level, FXS is associated with immature 
dendritic spine morphology (60,61). FMRP is an 
essential protein for synaptic development and plasticity 
because it is a key negative regulator mRNA translation 
and subsequent protein synthesis that can down-
regulate and/or up-regulate their targets at the synapse 
(62). FMRP inhibits protein synthesis that is needed 
for internalizing the AMPA receptors leading to long 
term depression (LTD); thus without FMRP there is 
enhanced LTD in the hippocampus (63). The Fmr1-KO 
mouse shows enhanced protein translation and protein 
synthesis in the hippocampus (64), LTD is significantly 
increased and this leads to deficits in synaptic plasticity 
and weakening of synaptic connections (65). Protein 
synthesis promotes synaptic plasticity activation, which 
is thought to be mainly coordinated by the action of 
metabotropic glutamate receptors (mGluRs) (66). This is 
the basis of the "mGluR theory of fragile X syndrome" 
(63). The neurobiology and several symptoms of FXS 
were rescued when the mGluR heterozygous mouse was 
crossed with the Fmr1-KO mouse (63,67). 
 Currently there are many other pathophysiological 
mechanisms described that are thought to be the 
result of absence or low FMRP. The lack of FMRP 
can also up-regulate PI3K, an important signaling 
molecule downstream of the activation of mGluR (31). 
Recently Matic et al. (2014), showed a global down-
regulation of the MAPK/ERK pathway and decrease in 
phosphorylation level of ERK1/2 in the murine Fmr1 
KO. However, others show an increase in this system 
in patient fibroblasts (68). A differential expression of 
many proteins involved in the p53 pathway, Wnt and 
calcium signaling was also found and led to postulate 
that calcium imbalance is part of pathophysiology 
of FXS (69). Although FMRP is mainly a negative 
regulator, there is evidence that it can up-regulate the 
translation of some mRNAs, such as those encoding 
GABAA receptor subunits (α1, α3, α4, β1, β2, ɤ1, ɤ2, 
and δ), which were significantly reduced in neocortex 

and cerebellum of the Fmr1-KO mice (70). Other 
proteins required for GABA synthesis (Glutamate 
decarboxylase, GAD), transport (GABA transporter, 
GAT) and catabolism (GABA transaminase, GABA 
succinic semialdehyde) were also found to be reduced 
(71). A balanced GABA system is required for neuronal 
activation, network oscillations, neuronal synchrony and 
facilitation of movement and integration of information 
in many brain regions (72). The imbalance between the 
GABA and Glutamate systems is believed to contribute 
to the cognitive impairments, anxiety, hyperarousal, 
ASD, and epilepsy in children with FXS (73). 
 A novel FMRP target mRNA is the neuronal nitric 
oxide synthase (NOS1 or nNOS) in mid-fetal human 
neocortex. FMRP was found to be a positive regulator 
of NOS1 translation, controlling NOS1 protein levels 
in a dose-dependent manner in vitro and in vivo (74), 
and the NOS1 was severely reduced in the fetal and 
post-natal developing neocortex of FXS patients (74). 
The evidence of the multiple roles of nitric oxide 
(NO) in multiple neural processes such as synaptic 
developmental, retrograde signaling and synaptic 
plasticity (75-79) led to the hypothesis that the decrease 
expression of NOS1 and secondary depletion of NO 
in the developing FXS brain may contribute to the 
neuropathology of FXS (80). 
 The absence of FMRP also affects the Brain Derived 
Neurotropic Factor (BDNF) levels in early and late 
development in the murine hippocampus. In early 
development of the KO mouse brain, hippocampal 
expression of BDNF is increased compared to wild 
type (WT) (81,82), whereas by age 3-4 months, BDNF 
expression is reduced compared to the WT (82,83). 
The mechanism of regulation of BDNF remains to 
be described, but this evidence suggests dual FMRP 
effects in BDNF expression during brain development. 
FMRP may also positively regulate many other mRNAs 
including SOD1, ASCL1, Kcnd2, and DLG4 (84-86). It 
is estimated that FMRP regulates the translation of about 
4% of brain mRNAs (87,88). We have discussed the 
mechanisms of pathogenesis mediated by the absence 
of FMRP; however, the mechanism that causes the 
silencing of the FMR1 gene by the full mutation remains 
uncertain. There are many targeted treatments that focus 
on these pathways to reestablish the normal neurobiology 
in the KO mouse and these have led to clinical trials of 
targeted treatments in patients with FXS.

2.7. FMR1 silencing mechanism of the full mutation

It is intriguing that the premutation can lead to enhanced 
expression of the gene, whereas the full mutation leads to 
suppression of transcription. There are mechanisms that 
could explain the reduced transcription of the FMR1 gene 
in the full mutation; these mechanisms can be divided in 
two groups: DNA-mediated and RNA-mediated (89). A 
model in which hairpin aggregation by the CGG repeats 
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results in the DeNovo methylation has been suggested 
because tridimensional CGG-structures can trigger their 
own methylation by DNA methyltransferases in vitro 
(90); another suggested DNA-mediated model involves 
repeat-binding transcription factors which in turn can 
aggregate other proteins and prevent transcription. This 
model was hypothesized from the existing evidence of 
a similar mechanism in mice where the pericentromic 
repeats in mice are silenced by Pax3 and Pax9 
hybridization and recruitment of H3K9 trimethylase and 
Suv39h1 (91) that finally inactivate these regions. The 
FMR1 mRNA products are a variety of transcripts of 
different sizes and reverted sequences that result from 
a number of splicing sites and the transcription of both, 
the sense and anti-sense strands. Colak et al. (2014), 
suggested an RNA mediated mechanism of silencing, in 
which the FMR1 gene is silenced through a hybridization 
of the complementary CGG-repeat track of the FMR1 
mRNA (92). Other RNA-mediated mechanisms have 
been suggested to involve the formation of RNA hairpins 
subtracts of the enzyme Dicer, RNA-DNA hybrids 
for chromatin compaction and promoter antisense-
transcripts (89). The silencing mechanisms of FMR1 
are potential targets for drug therapy. Since the FMRP 
is a key transcription regulator of many neurobiological 
pathways, in theory targeted treatments to prevent 
the inactivation of the FMR1 gene may lead to more 
normal FMRP levels and reestablish the function of 
many neurobiological systems. Therefore silencing 
gene modifiers could be more efficient, although more 
difficult to translate into patients than specific-system 
treatments, such as the mGluR5 antagonist and GABAA 
agonists.

3. Premutation allele

As previously mentioned in adults the premutation is 
associated with FXTAS, FXPOI and a variety of other 
medical/psychiatric problems. Recently the studies of 
children with the premutation have demonstrated that 
some carriers can demonstrate limited physical features 
of FXS in addition to psychological or developmental 
problems whereas most carriers do not show any 
symptoms.

3.1. Physical findings

Premutation carries can present with facial dysmorphic 
features and the most common finding is prominent 
ears (89,90). Recently a study of premutation carriers 
found that 33% of postpubertal carrier males had 
macroorchidism (93). Those with macroorchidism 
had a lower verbal and full scale IQ and increased 
FMR1 mRNA levels compared to those without 
macroorchidism (93). This suggests that about one third 
of individuals with the premutation have significantly 
lowered FMRP leading to their macroorchidism and 

mildly lowered cognitive abilities. Premutation carriers 
can also have joint-laxity and smooth skin typical of 
those with FXS (94,95).

3.2. Neurological disorders

Chonchaiya et al. (2011) studied boys with the 
premutation and found an association between seizures, 
ASD, and ID. These problems are more common in 
premutation boys who present clinically compared to 
those who are identified through cascade testing. FXS 
children of premutation mothers with autoimmune 
disorders were found to have increased epilepsy and 
tics compared to children whose mothers did not have 
autoimmune problems (96).

3.3. Cognitive and behavioral phenotype

The cognitive effects of the premutation show variable 
results depending on the age of the carrier and whether 
they present as the proband or were identified through 
cascade testing. Not clinically referred children 
typically do not show differences compared to controls, 
particularly in girls (97). Probands who presented 
clinically usually have cognitive deficits compared 
to controls (97,98). ADHD is increased in carriers 
compared to controls (97) and in adulthood these 
symptoms can persist or present as executive function 
deficits (34,99,100). Myers et al. (2001), in a small 
study of 14 children with the premutation found a trend 
towards lower performance IQ (101). Boys with the 
premutation have higher rates of ADHD symptoms, 
shyness, social deficits, autism spectrum disorder 
(98,102) and, less commonly, intellectual disability (ID) 
compared to controls. Many case reports of premutation 
involvement and ASD have been published. Clifford et 
al. (2007) reported seven males with the premutation; 
two were probands, and one of these had ASD (104). 
Goodlin-Jones et al. (2004), reported four premutation 
boys and two girls with ASD, and their levels of FMRP 
were significantly lower than normal (103). In the 
Farzin et al. (2006) study, there were 14 boys with the 
premutation whose parents sought medical attention for 
their sons' behavior problems (probands), 13 boys with 
the premutation diagnosed by cascade testing (non-
probands), and 16 boys who were siblings without the 
premutation (controls). They found that 93% (13 of 14) 
of probands, 38% (6 of 13) of the non-probands and 
13% (2 of 16) of the controls had ADHD. In addition 
71% of probands (10 of 14) and 8% of non-probands 
(1 of 13) had ASD. In a screening study of individuals 
from families with FXS, about 14% of boys and 5% of 
girls with the premutation met diagnostic criteria for 
ASD (104). A web questionnaire of more than 1,000 
families demonstrated a prevalence of autism or ASD 
of 13% in boys with the premutation and 1% in girls 
with the premutation (105). 
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 Recently, the Rivera group at the MIND Institute 
(106) using a contrast-detection task found low-level 
visual processing deficits in infants with deficits in 
infants with FXS and with the premutation. In both 
groups of infants the contrast levels needed for detection 
of motion were significantly greater than those of 
typically developing infants. They concluded that early in 
life premutation infants can show visual or perhaps other 
deficits that are also observed in children with FXS.
 Psychiatric problems in adults, including depression 
and anxiety, occur in about 40% of premutation carriers 
(14). Although initial studies of psychiatric disorders 
in premutation carriers hypothesized that the mood 
disorders found were associated with the difficulties 
of caring for a child with FXS, these problems can 
occur independently from having an affected child 
(17). In the life-time of individuals with FXTAS, 65% 
met the clinical criteria for a mood disorder according 
to the DSM-IV, remarkably for anxiety in 52% of the 
cases (17). It has been found that adult females have 
more problems with attention, hyperactivity (105), 
sleep problems (23), autistic behaviors such as rigidity 
(107), perseverance and aloofness (108) and language 
dysfunction (109) compared to controls. 

3.4. Neurobiology

Hippocampal neurons with the premutation in culture 
(in vitro) showed reduced dendritic maturity with 
shorter dendritic lengths and fewer branches between 
7 and 21 days compared with WT neurons (110). The 
premutation neurons had elevations of stress proteins 
and their mRNAs, including heat shock proteins (Hsp27 
and Hsp70) and αB-crystallin. In addition premutation 
neuronal cultures die more easily in culture by 21 days 
compared with WT type neurons (110,111). Furthermore, 
altered embryonic neocortical development in the 
premutation mouse compared to WT has been reported 
(112). At 12 weeks early deficits in learning were 
observed in KO mice, the premutation mouse was unable 
to detect a change in the distance between two objects; 
and at 48 weeks, they could not detect a transposition 
of objects (113). This suggests that the premutation 
leads to a clear neuronal susceptibility that in addition 
to other genetic hits (93) or environmental toxicity (114) 
can result in a pathogenic neurobiology. Further studies 
are necessary to determine the neurobiology of affected 
individuals with the premutation.

3.5. Premutation genotypes

Initially FMR1 premutation carriers were thought to 
have normal FMRP levels, however recent research 
findings suggest that carriers have elevated levels of 
mRNA due to increased transcription, but decreased 
level of FMRP because the translation is less efficient 
(95,103). As the premutation increases from 55 to 200, 

the level of FMR1 mRNA increases and the levels of 
FMRP begin to decline (115,116). Reduced FMR1 
translation is observed in adult individuals with large 
size premutation alleles (> 110 CGG repeats) and these 
individuals can have cognitive deficits. Also recent 
animal studies of the premutation mouse demonstrate 
lowered levels of FMRP in addition to elevated FMR1-
mRNA in many brain areas, particularly the amygdala, 
hippocampus, and cortex, when compared with controls 
without the premutation (117). 
 The causative molecular mechanism of cognitive 
deficits and neurodevelopmental problems were 
thought to be related to silencing of the FMR1 gene 
("loss of function") and decreased amount of FMRP 
while the mechanisms involved in FXTAS and FXPOI 
are thought to be associated with abnormally increased 
levels of FMR1 RNA ("gain of function") and RNA-
toxicity. However recent evidence supports that both 
the FMRP deficits and elevated FMR1 RNA in carriers 
are associated with amygdala dysfunction, which causes 
cognitive deficits, anxiety, autism spectrum disorders, 
social avoidance, and aggressive behavior. 
 There are at least 3 mechanisms that could explain 
the elevation of FMR1 mRNA (89). One suggests 
that the observed increase of acetylated histones at 
the FMR1 promoter (118) could increase the FMR1 
gene transcription. Second, the long tracts of CGG-
repeats have been shown to exclude nucleosomes in 
vitro (119) and if this occurs in vivo it may increase the 
accessibility of transcription factors to the promoter. 
Third, the R-loops formed by the CGG-repeats (120,121) 
may lead to chromatin decondensation (122). The 
mechanism of FMR1 mRNA-toxicity remains to be 
established, and there are at least 3 models proposed. 
The "sequestration" model which proposes that the RNA 
expanded CGG repeats are pathogenic by sequestrating 
proteins, including Purα, Rm62, CUGBP1, hnRNP A2/
B1, SAM68, and DROSHA-DGCR8 (123-127) that 
in turn alter the transcription of many other proteins. 
A second model, "RAN translation", represents non-
canonical translation that results in expression of toxic 
polyglycine- and polyalanine-containing products 
(128,129). A third model, "antisense FMR1 (ASFMR1) 
toxicity", involves the expression of antisense transcripts 
products (130). Mitochondrial abnormalities have 
also been found in FXS and premutation carriers. The 
mechanism of mitochondrial dysfunction is unknown but 
this mechanism is another cause of premutation and full 
mutation involvement (131,132). 

4. Overlapping phenotypes, FMR1  spectrum 
disorders

The overlap between premutation disorders and full 
mutation disorders occurs when the full mutation is 
partially or completely unmethylated or there is a high 
level of mosaicism in FXS. This puts those with FXS at 
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risk for FXTAS and other premutation problems. In fact 
there have been a handful of individuals with FXS who 
have developed FXTAS and these individuals are high 
functioning and have unmethylated alleles or mosaicism 
(133-136). Even in the midrange of CGG repeats in 
premutation carriers there may be mild deficits of 
FMRP leading to behavioral problems or psychiatric 
phenotypes (137). 
 Another area of overlap occurs in the gray zone (45-54 
CGG repeats). The rate of FMR1 gray zone expansions 
in the general population is variable, but large population 
studies report rates of 0.8% to 3.0% for repeat sizes 
between 41 and 54 (138-140). In 2006, it was recognized 
that gray zone expansion carriers can also present with 
premature ovarian insufficiency at a higher rate that in 
the general population (141,142). In a screening study 
in 2011 a higher rate of Parkinsonism was found in the 
gray zone mutation carriers compared to controls without 
the gray zone. There have also been reports of FXTAS 
in those with a gray zone (143,144) because elevated 
FMR1 mRNA can also occur in this range (145). Other 
clinical associations with the gray zone in adults include 
anxiety (146) and cognitive decline (147). However 
other studies did not show this association (147-151). 
Pertinent to children, in 2000, a 5-year survey of boys 
who required special education showed an excess of 
gray zone expansions (152), however, this result has not 
been replicated (153). Further studies are necessary to 
study the association of the gray zone mutation and the 
mechanisms of disease in adults and children. 

5. Conclusion

Clinicians need to know that those with an FMR1 
mutation are at risk for a wide range of neurovelopmental 
and/or psychological disorders/neurological disease, 
referred as Fragile X Spectrum Disorders (Figure 2). It is 
also important to have a holistic model of understanding 
on how the phenotype is related to the number of CGG 
repeats and/or size-mosaicism, including epigenetic 
changes or methylation status (partial and full, as 
well as methylation mosaicism), genetic background 

(gene modifiers and second genetic hits which can be 
protective or pathogenic) and environmental exposures 
(environmental changes, exposures to toxins, and social 
interactions "socionome" among other factors). 
 Our understanding of FMRP deficits in the FXSD 
has been hampered by the limited technology available 
to assess quantitative FMRP levels. Although the 
immunocytochemical methodology demonstrated a 
strong correlation with IQ in those with a fragile X 
mutation (35,154), it was not sufficiently quantitative 
to show the remarkable variation that exists even 
in the normal population. This variation has been 
demonstrated by ELISA technology but the technique is 
difficult to replicate in subsequent samples (155). Newer 
techniques including the immunoassay utilizing time-
resolved Forster's resonance energy transfer (156) and 
also the Luminex immunoassay (157). These techniques 
will lead to a new understanding of FMRP deficits not 
only in FXSD, but also in other neurodevelopmental/ 
neuropsychiatric disorders. The recent publication of 
FMRP deficits in the brains of individuals with bipolar 
disorder, schizophrenia, depression and autism (156-
158) has opened our eyes to the importance of FMRP 
outside of the FXSD population. Even more remarkable 
is the finding that the age of onset and overall IQ in 
those with schizophrenia is correlated with FMRP 
deficits in peripheral blood (159). The advances in 
treatments for FXS may also be helpful for premutation 
carriers with low FMRP and perhaps in other disorders 
with low FMRP such as ASD. 
 An area of overlap that is in need of research is the 
aging process in FXS because many patients experience 
cognitive decline and the cause is not known, although 
occult mosaicism leading to a FXTAS-like picture is 
possible (160). Older patients with FXS also have a 
high risk for Parkinson's disease and it is uncertain if 
this is also related to occult mosaicism (161). These 
are important considerations for children with FXS 
because they are raised by mothers with the premutation 
who may experience a premutation disorder that could 
influence the development of their offspring. These 
intergenerational influences require more study. Certainly 
the development of effective targeted treatments aim 
to have a significant effect on the ultimate outcome for 
those with FXSD.
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1. Introduction

More than two decades have passed since the Congress 
(Revitalization Act of 1993) required that clinical trials, 
funded by the US National Institutes of Health, include 
members of underrepresent minorities (URM)(1). 
However, data from the US Census Bureau, National 
Institute of Health and Tufts Center for the Study of Drug 
Development (CSDD) demonstrate a clear disparity that 
exists amongst minority populations in clinical research 
(US Census Bureau, NIH, and Tufts CSDD, 2010) (2). 
Randomized controlled trials (RCTs) are considered to 
be the gold standard in evaluating medical interventions. 
The ability to trust and apply the results of clinical trials, 
as well as to transfer therapeutic treatments into clinical 
practice, is related to the type and number of patients 
enrolled in the studies (National Institute of Cancer, 

2002) (3). With low minority participation in clinical 
trials, there is a lost opportunity to discover the effects of 
a drug-agent amongst URM and increases the existing 
health disparities within minorities. 
 Barriers to recruitment, participation, and retention 
in clinical trials for URM are complex, but can be 
grouped into 3 categories: i) the effect of the disease 
studied; ii) systems factors (e.g., access to clinics, 
length of appointments or procedures, gap between 
seeking and receiving care and language barriers (most 
pharmaceutical companies do not translate the outcome 
measures into other languages); and iii) patient factors 
(e.g., problems with medication, mental illness, 
incomplete understanding, race, economical status and 
mistrust of health care professionals) (4,5). Clinical 
trials in children are often underappreciated even when 
results have shown major improvements in health care. 
An illustrious example is the 5-year survival improved 
from 25% to more than 70% as a result of multicenter 
trials for acute lymphoblastic leukemia (6). However, 
when compared with adult clinical trials, the number 
of pediatric clinical trials remains low (7) and most of 

Summary The purpose of this study was to identify demographic data, motivational factors and barriers 
for participation in clinical trials (CTs) at the University of California Davis, MIND Institute. 
We conducted a cross-sectional survey in 100 participants (81 females and 19 males). The 
participants had high education levels (only 2% had not completed high school), a mean age 
of 44 years (SD ± 9.899) and had at least one child with a neurodevelopmental disorder. The 
diagnosis of Fragile X syndrome (FXS) had a significant association with past participation 
in CTs (p < 0.001). A statistical significance for age of diagnosis and participation in CTs was 
also found (z = ‒2.01, p = 0.045). The motivating factors were to help find cures/treatments for 
neurodevelopmental disorders and to relieve symptoms related to child's diagnosis. Factors 
explaining lack of participation, unwillingness to participate or unsure of participation were: 
lack of information/knowledge about the trials, time commitment to participation (screening, 
appointments, assessments, laboratory tests, etc.) and low annual household income. These 
results show that a portion of underrepresented minorities (URM) not participating in CTs 
are willing to participate and suggests that reducing barriers, particularly lack of knowledge/
information and time commitment to trials are needed to improve recruitment.
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them are related to cancer. 
 The Health Resources and Services Administration 
(HRSA) and the Center for Diseases Control and 
Prevention (CDC) found that the prevalence of parent-
reported developmental disorders (DDs) in children 
increased by 17.1% from 1997 to 2008 (8). With this 
rise, a push towards potential targeted treatments for 
neurodevelopmental disorders has led to multiple Phase 
II clinical trials for children with neurodevelopmental 
disorders including Fragile X syndrome (FXS) (9) and 
autism (10). Although several studies have proffered 
reasons for the relative absence of URM among clinical 
trial participants (11-13) to our knowledge none have 
specifically looked at participation of children with 
neurodevelopmental disorders. Here we present a 
small cross-sectional survey of factors associated with 
participation in clinical trials for children with FXS 
syndrome and other neurodevelopmental disorders. The 
intent of this study was to gather general demographic 
information and attitudes towards CTs amongst the 
parents of children with neurodevelopmental disorders. 
We also investigated whether or not URM groups 
are less likely to participate in CTs than their White 
counterparts, and whether URM groups were willing 
to participate in such studies in the future. Factors that 
impact the decision to participate in CTs were also 
gathered in order to identify barriers.

2. Methods

2.1. Participants and procedures

This study was approved by the Investigational Review 
Board of the University of California Davis and Touro 
University California. The research was conducted at 
the University of California Davis, Medical Center, 
MIND Institute in Sacramento, California, where about 
22 clinical trials were conducted at time of the study. 
The cross-sectional survey was administered to parents 
who came to the MIND for their child's treatment and/
or to participate in research.
 The survey had twenty-nine questions, most of 
them with a multiple-choice answer and an additional 
space for free response. Demographic information 
was collected including: age, sex, race, ethnicity, 
educational level (if applicable spouse/partner data 
was also obtained), diagnosis and age of diagnosis, 
language spoken at home and annual household income. 
This survey looked at the attitudes of current clinical 
trials participants based on a four-point Likert scale 
ranging from "not at all important" to "very important". 
The questions were validated by a research committee 
that included multiple members of the MIND staff 
(physicians, psychologists, social workers, research 
assistants and volunteers) and patients. US Census's 
definition of minority was used in classifying the 
participants into URM and non-URM (14). Mean 

household income was classified according to the US 
Census (15).

2.2. Data management and analysis

The data was collected and managed using the REDCap 
(Research Electronic Data Capture) electronic data 
capture tools hosted at the UC Davis CTSC. REDCap 
is a secure, web-based application designed to support 
data capture for research studies (16). The data was 
analyzed using Statistical Package for the Social 
Sciences (SPSS) for Windows, Version 21. Descriptive 
statistics and bivariate statistics included a Chi-square 
test for independence. Representativeness of sample 
respondents was assessed using Pearson's or Fisher's 
exact-test. Nonparametric statistical tests (Kruskall-
Wallis tests, Wilcoxon rank-sum/Mann-Whitney U 
tests) with a significance level of 0.05 were performed 
for continuous and ordinal variables that were indicated 
as being a normal based on Shapiro-Wilk Normality 
test. An α level of 0.05 was used for all statistical tests 
and all p-values were given as two-tailed. A logistic 
regression analysis was performed for the outcome 
variable was 'participation in a research trial(s)' (yes/no) 
and 'future participation in clinical trial(s)' (yes, no, or 
don't know/unsure).

3. Results

3.1. Responders demographic

A total of 100 individuals participated in this survey. All 
respondents were asked to report their race in addition 
to ethnicity; 69 were White, 5 Black, 4 Asian, 1 North 
American Indian/Alaska Native, 18 "Other" and 3 did 
not respond. When all participants (n = 100) were asked 
for ethnicity, 21 identified themselves as Hispanic/
Latino.
 For analysis purposes, due to small sample size of 
each race and ethnicity the respondents were compared 
in two broader categories: Non-Hispanic White (69%) 
vs. URM (28%) and Non-Hispanic White (69%) vs. 
Hispanic/Latino (21%). 
 The majority of the respondents were females (81%), 
with an average age of 44 years (range 21-69 years, SD 
9.8 years). The respondent's mean annual household 
income was high ($104,972). When controlling for 
outliers, the mean yearly household income was $91,787 
(range $15,000-$200,000, SD 43,925). URM and non-
Hispanic Whites reported fairly high annual house 
income and level of education with no differences 
observed. The majority of respondents belonged 
to the "middle economic class" (annual household 
$104,972), and had at least an Associate's degree. UMR 
respondents had a similar profile, with the mean annual 
household income being $108,037.64 and had at least 
an Associate's degree, or higher.
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whether they would participate in CT in the future; of 
those 14 were URM (36.8%).
 To evaluate differences among future participation 
conditions (Yes-would participate in CT, No-would not 
participate in CT, and Don't know/unsure whether or not 
to participate in CT) the Kruskal Wallis test was used 
and revealed a significant effect on future participation 
in CTs on annual household income (H(2) = 7.24, p = 
0.027). A post-hoc test using Mann-Whitney U tests 
with Bonferroni correction showed the significant 
differences in household income between those who 
reported willingness to participate and those who were 
not willing to participate in future CT (p < 0.05, r = 
0.24) and between those who reported not participating 
and those who reported being unsure whether or not 
to participate in future CT (p < 0.05, r = 0.38) (lower 
income was associated with not willing to participate 
and unsure to participate). Furthermore, no willingness 
to participating in CTs and the amount of time involved 
were also found to be a significant association, (H(2) 
= 9.92, p = 0.007). The responders did significantly 
differ in their willingness to participate in future CT 
when stratified by annual household income, "other" 
diagnosis, and level of importance for amount of time 
commitment to CTs (Table 3).
 The Wald criterion demonstrated that FXS diagnosis 
(p = 0.037) and age of diagnosis (p = 0.026) made a 
significant contribution to prediction. From the analysis, 
the odds ratio for diagnosis of FXS was 12 times as large 
and therefore, parents with a child diagnosed with FXS 
were 12 more times likely to have participated in CT. 

 Twenty-five (25% of all participants) responders 
indicated that they have had their child participate 
in clinical trials, 28% of those were URM (n = 7). 
Descriptive statistics of clinical trial participants and 
non-clinical trial participants are shown in Table 1.

3.2. Responders participation in clinical trials

There were no associations between gender of 
respondent, race, ethnicity or URM classification and 
past participation in CTs (Race: χ2 (1) = 0.795, p = 
0.373) (Ethnicity: χ2 (1) = 0.020, p = 0.887) (URM: 
χ2 (1) = 0.718, p = 0.397). A statistically significant 
association was reported between "other" diagnosis 
and no participation in CT (χ2 (1) = 10.68, p = 0.001). 
The diagnosis of FXS was significantly associated 
with past participation CTs (p < 0.001). A statistical 
significance for age of diagnosis and participation in 
CTs was found (z = ‒2.01, p = 0.045). The level of 
importance of being assigned to the placebo group (z 
= ‒2.27, p = 0.023) and the benefits from the study 
treatment (z = ‒2.49, p = 0.013) were associated with 
no participation (Table 2). 

3.3. Willingness to participate in CTs

Fifty respondents, of which 30% (n = 15) were URM, 
indicated that they would be willing to participate 
in CTs. Twelve respondents, of whom 6 were URM 
(50%), indicated no willingness to participate in CTs. 
Thirty-eight of the total respondents were unsure 

Table 1. Description of responders participants and non-participants in clinical trials showing URM, age and annual 
household income

Group of
respondents

Clinical trials
participants
(n = 25)

Non-Clinical
Trial participants
(n = 75)

All diagnosis

FXS
ASD
Asperger's
Learning Disabilities
ADHD
22q11.2 Deletion
Other*

FXS
ASD
Asperger's
Learning Disabilities
ADHD
22q11.2 Deletion
Down syndrome
Bipolar Disorder
Intellectual disability
Tourette syndrome
Compulsive Disorder
Other*

Age 
(25 and 75% percentiles)

Median 43 years
(32-56)

Mean 42.74 years
(+/- 1.449)

Median 42 years
(21-69) **n.s.

Mean 44.97 years
(+/- 1.309) **n.s.

Other* Undiagnosed-going through evaluation, neurotypical, neurotypical with attentional issues, Central Auditory Processing Disorder (CAPD), 
Dyscalculia-Math Disorder, Expressive/Receptive Language Disorder, depression, Borderline Personality Disorder, Ehlers-Danlos Syndrome, 
Septo-optic Dysplasia, Phenylketonuria (PKU) birth, schizophrenia, Pediatric Autoimmune Neuropsychiatric Disorders Associated with 
Streptococcal Infections (PANDAS), dyslexia, pulmonary atresia, dwarfism, myotonic dystrophy, Long QT, Neurofibromatosis type I (NFI), 
Moebius syndrome, Tuberous sclerosis complex. **n.s. no significant differences.

No. of
respondents

10
10
2
1
4
1
2

4
20
14
3
10
2
1
2
1
1
1
33

URM

2
5
0
0
0
0
0

2
7
6
1
5
0
0
1
1
0
0
11

Annual household income
(25 and 75% percentiles)

Median $86,000

Mean $112,801.33

($27,828-$320,00)

Median $90,000
**n.s.

Mean $102,231
($15,000-$400,000) 

**n.s.
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3.4. Level of satisfaction with participation in clinical 
trials

Responders who had children participate in CTs (n = 
25) were asked to rate how positive or negative their/
their child's experience was in form of a Likert scale 
of 'very negative' to 'very positive' (Figure 1). 62% 
reported a 'very positive' experience. In free text, 
several respondents amongst neurodevelopmental 
clinical trials participants reported that they, as well 
as the child, enjoyed working with the MIND staff 
and seeing improvements as the primary reason for 
their positive experience. As a typical example one 
respondent wrote: "My child enjoyed participating, but 
there were a lot of forms to complete". 

3.5. Motivational factors

During the survey, respondents were asked to select 
the best reason(s) for their choice to participate or not 
to participate in CT. Among all respondents who were 
willing to participate in a clinical trial study, the top two 
motivating factors were to help find cures/treatments 
for neurodevelopmental disorders (77.2%) and relieve 
symptoms related to child's diagnosis (63.6%). Similar 
results were seen amongst the URM respondents 
(Figure 2). To consider participation in clinical trials, 
responders reported it being 'very important' to know 
more details about the trials; 78% participants indicated 
knowledge about how much their child/children would 
benefit from the study; 72% how much other people 

Table 2. Associations of participation in clinical trials

Variable

Fragile X diagnosis
      Yes
      No
Other** diagnosis
      Yes
      No
Level of importance‒Child benefits from study treatment
      Not at all important
      A little important
      Somewhat important
      Very important
Level of importance‒placebo group
      Not at all important
      A little important
      Somewhat important
      Very important

No. of Non-participants

4
71

33
42

0
2
10
52

12
17
17
17

No. of Participants

10
15

2
23

1
3
6
13

11
3
7
2

   p

0.001*

0.001*

0.013*

0.023* 

*Statistical significant at p < 0.05. Other**, Undiagnosed-going through evaluation, neurotypical, neurotypical with attentional issues, Central 
Auditory Processing Disorder (CAPD), Dyscalculia-Math Disorder, Expressive/Receptive Language Disorder, depression, Borderline Personality 
Disorder, Ehlers-Danlos Syndrome, Septo-optic Dysplasia, Phenylketonuria (PKU) birth, schizophrenia, Pediatric Autoimmune Neuropsychiatric 
Disorders Associated with Streptococcal Infections (PANDAS), dyslexia, pulmonary atresia, dwarfism, myotonic dystrophy, Long QT, 
Neurofibromatosis type I (NFI), Moebius syndrome, Tuberous sclerosis complex

Table 3. Associations between participation and "other" diagnosis, ethnicity, income and time spent participating

Variable

Other diagnosis
      Yes
      No
      Total
Ethnicity
      Hispanic/Latino
      Not Hispanic/Latino
      Total
Annual household income
      > 250,000
      150,000-249,999
      100,000-149,999
      60,000-99,999
      32,500-59,999
      23,051-32,499
      < 23,051
      Total
Level of importance‒Time
      Not at all important
      A little important
      Somewhat important
      Very important
      Total

Unsure to participation (No)

14
24
38

4
34
38

1
3
11
8
3
1
2
29

1
2
13
15
31

Won't participate (No)

9
3
12

5
7
12

0
0
0
4
2
2
0
8

1
0
1
4
6

   p

0.004*

0.057

0.027*

0.007*

 
*Statistical significant at p < 0.05

Will participate (No)

12
38
50

12
38
50

3
8
10
15
6
1
1
44

6
7
26
9
48
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would benefit from the study; and 70% for information 
about side effects. 64% of all respondents who were 
not willing or unsure to participate in CTs reported 
that lacking general knowledge/information regarding 
clinical trials was the main reason. In addition, 48% 
indicated time commitments and 32% indicated "other" 
reasons. Amongst URM respondents, 75% reported lack 
of general knowledge/information regarding clinical 
trials and 60% reported time commitment.

4. Discussion

Findings from this study yielded no association between 
gender, age, race and level of education (of both 
respondent and spouse/partner) in CTs participation. 
In our institute we have one of the only Spanish-
speaking clinical trials clinic where personnel involved 
include coordinators, psychologists and physicians 
who are bilingual in Spanish. We also have the support 
of pharmaceutical companies to translate documents 
and standardized assessments in Spanish for a few of 
the clinical trials. There was a significant association 
between annual household income diagnosis and age 

of the diagnosis and CTs participation or willingness 
to participate. Low-income families were less likely to 
participate in CTs. Children who were diagnosed early 
in life and had diagnosis of FXS where more likely to 
participate in CTs. Older age at diagnosis and higher 
levels of importance of being assigned to a placebo group 
and expected benefits were significantly associated in 
parents who have not enrolled their children in CTs. This 
may suggest that education targeted to young parents 
in regard to diagnosis, benefits for treatment trials and 
benefits for participating, even when assigned to a 
placebo group, are necessary.
 The observed significant difference in annual 
household income, between those who were willing 
and those who were not willing to participate, and 
between those who have not participated and those who 
were unsure about future participation, may suggest 
that the amount of time spent in CTs negatively affects 
economic status of these families. Therefore, those with 
lower income are less likely to participate or, consider 
participation. The work of low income earners may also 
be less flexible in allowing time off to participate in a 
clinical trial. Single parents may also find it impossible 
to participate in such trials. Findings from ASD studies 
report that URM families with a child with ASD 
experience more difficulties accessing services than 
Whites (17-19). However, the findings from our study 
reported otherwise. This could be caused by sampling 
bias, or the much lower number of respondents identified 
as URM compared to non-URM; also the URM sample 
were highly educated and had high household incomes; 
and finally, the responders were part of a referral center 
for neurodevelopmental disorders. We also found that a 
proportion of URM who have not been enrolled in CTs 
are willing to participate. 
 This study also highlights that Whites are sharing 
or facing the same participation barriers as URM, 
including knowledge and education in study benefits 
as well as side effects. This study also suggests that 
educational programs, decreasing time commitment 
and  allowing more flexibility in the CTs schedules 
will increase participation among all the potential 
participants. Children who were not diagnosed with 
FXS and children diagnosed with "other" disorders 
were less likely to have participated in CTs. This is 
likely because the MIND Institute is a well-known 
center for CTs in FXS and exciting translational 
research has led to targeted treatment trials for this 
condition (9). Many of the responders to our survey 
included participants of these CTs. Pertinent to FXS, 
the mothers of FXS children are premutation carriers 
and may have many medical and psychological 
problems (20) that can be addressed during their 
children's CTs appointments, creating hybrid trials 
to help families rather than isolated family members. 
Efforts to increase minority participation in CTs should 
focus on ensuring infrastructure, meaningful outreach 

Figure 2. Respondents' reasons to participate in clinical 
trials.

Figure 1. Level of satisfaction in clinical trials partipants.
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and engagement efforts and access to health research 
for all groups, rather than solely attempting to change 
URM's attitudes. 
 There are limitations to performing questionnaire 
surveys and a greater depth of information could have 
been obtained by conducting either focus groups or 
interviewing participants.  Thus, enabling the researcher 
to evaluate respondents' attitudes (negative or positive) 
and to identify other opinions and recommendations 
for services. In regards to income, studies have 
found that families with more than one child with 
neurodevelopmental disorders have more problems 
accessing medical care and have lower incomes, 
regardless of their education (21). In this study, the 
number of children with neurodevelopmental disorders 
in the families was not collected. In addition, not 
everyone reporting a low income indicated problems 
accessing health care as one of the reasons to participate 
or have participated in CTs. Further studies are 
necessary to understand and identify barriers for URM 
clinical trials participation, especially among children 
with neurodevelopmental disorders. 
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1. Introduction

Fragile X syndrome (FXS) and FMR1 associated 
disorders are predominantly the result of an expansion of 
a trinucleotide repeat element located within the 5' UTR 
of the Fragile X Mental Retardation 1 gene (FMR1). In 
normal individuals the triplet repeat number varies in 

Summary The CGG trinucleotide repeat within the FMR1 gene is associated with multiple clinical 
disorders, including fragile X-associated tremor/ataxia syndrome, fragile X-associated 
primary ovarian insufficiency, and fragile X syndrome. Differences in the distribution 
and prevalence of CGG repeat length and of AGG interruption patterns have been 
reported among different populations and ethnicities. In this study we characterized the 
AGG interruption patterns within 3,065 normal CGG repeat alleles from nine world 
populations including Australia, Chile, United Arab Emirates, Guatemala, Indonesia, 
Italy, Mexico, Spain, and United States. Additionally, we compared these populations with 
those previously reported, and summarized the similarities and differences. We observed 
significant differences in AGG interruption patterns. Frequencies of longer alleles, longer 
uninterrupted CGG repeat segments and alleles with greater than 2 AGG interruptions 
varied between cohorts. The prevalence of fragile X syndrome and FMR1 associated 
disorders in various populations is thought to be affected by the total length of the CGG 
repeat and may also be influenced by the AGG distribution pattern. Thus, the results of this 
study may be important in considering the risk of fragile X-related conditions in various 
populations.

Keywords: AGG interruptions, FMR1 allele, CGG repeat, expansion, ethnicity
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length from 5 to 44 CGG repeats. Intermediate alleles 
are between 45 and 54 repeats, premutation alleles are 
between 55 and 200 CGG repeats and above 200 CGG 
repeats are full mutation alleles (1). FMR1 full mutations 
cause FXS, while premutation alleles lead to fragile 
X-associated tremor/ataxia syndrome (FXTAS) in an 
estimated 40% of males and 8-16% of females with 
the mutation, and fragile X-associated primary ovarian 
insufficiency (FXPOI) in approximately 20% of female 
premutation carriers (2).
 The CGG repeat element, like other trinucleotide 
repeats, is prone to expansion during transmission from 
parent to child (3). While the mechanism that gives rise 
to CGG repeat expansion in FMR1 is not understood, 
evidence suggests repair of single-strand breaks in the 
meiotically arrested oocytes form loops, which may be 
incorporated into the DNA through mismatch repair 
resulting in an expansion (4). 
 Normal alleles most frequently have 2 AGG 
interruptions, less frequently they have 1 AGG 
interruption or 0 AGG interruptions, and rarely greater 
than 2 AGG interruptions. Within normal alleles the 
patterns most commonly seen are 9 or 10 CGG repeat 
segments between interruptions (5,6). The 9-A-9-A-9 
and 10-A-9-A-9 AGG interruption patterns predominate 
in all populations that have been studied, evidence 
that these two patterns were present 200,000 years ago 
during early divergence of human races or that a strong 
selection pressure exists at this locus (7). 
 In intermediate and premutation alleles the AGG 
interruptions tend to occur at the 5' end of the locus and 
the pure CGG stretch, defined as the longest stretch of 
uninterrupted CGG repeats, is located at the 3' end (8,9). 
The loss of AGG interruptions appear to have occurred 
multiple times during human evolution (10) but can 
be a late event in the mutation pathway that leads to 
expansion (11). It is rare for AGG interruptions to be lost 
during transmission, but observation of its occurrence 
has been reported (12-14).
 A normal allele without an AGG interruption has been 
shown to have an increase mutational rate compared to an 
allele of similar size containing an AGG interruption (15-
17). Differences in the distribution of AGG interruption 
patterns between ethnicities, has been reported, including 
differences in the frequency of alleles that exceed 35 
CGG repeats in length and lack AGG interruptions. 
These higher frequencies are associated with increased 
prevalence of FXS (18). Conversely, highly interspersed 
CGG repeat alleles have been observed in the Basque, 
Native American, and Asian populations, which also have 
lower estimated FXS prevalence rates (19,20).
 The presence of AGG interruptions does not seem 
to affect the transcriptional or translational expression 
of the FMR1 gene (21-24). However, the presence of 
AGG interruptions in both intermediate and premutation 
alleles has been shown to decrease the rate of instability 
(any change in CGG repeat size) and magnitude of size 

change in both paternal and maternal transmissions 
(12,25,26).
 While the distribution of CGG repeat total length 
has been reported in a number of populations (27), 
fewer studies have reported the distribution of AGG 
interruptions within populations. This study reports on 
the AGG interruption patterns in a total of 3,065 normal 
alleles (9-40 CGG repeats) from 1,989 participants 
(males: n = 794; females: n = 1,195) from 9 countries: 
Australia, Chile, Emirates, Guatemala, Indonesia, Italy, 
Mexico, Spain, and USA. We compare these results with 
previous studies that reported AGG interruption patterns 
in global populations (Figure 1). 
 Our findings indicate that variations in CGG repeat 
allele sizes and AGG interruption pattern distributions 
exist between populations. Two populations (Australia 
and Indonesia), from the nine newly described, had a 
higher frequency of long pure CGG repeat stretches 
(greater than 20 pure CGG repeats), and the USA 
population had a lower frequency of these long pure 
stretches. These differences may be important when 
considering the burden of FMR1 associated disorders in 
different populations.

2. Materials and Methods

2.1. Participants

Genomic DNA from unrelated individuals with at least 
one normal FMR1 allele was included in this study (n = 
3,065 alleles). These samples were previously screened 
to determine the prevalence rates of expanded alleles. 
Cohorts from Australia (n = 201) (28), Chile (n = 77), 
the United Arab Emirates (n = 263), Guatemala (n 
= 151) (29), Indonesia (n = 312) (30), Italy (n = 67), 
Mexico (n = 277), Spain (n = 358) (31), and the United 
States (n = 1,359) (32) were included. Individuals were 
recruited from the general population for the Italy, 
Spain, and United States samples. From the USA cohort, 
participants were from two different geographical 
areas: Sacramento (California) and Chicago (Illinois). 
The remaining samples were recruited from high-risk 
populations including intellectual disabilities, individuals 
with a family history of FXS and individuals with 
Parkinsonism. DNA isolation and AGG interruption 
genotyping were performed at the UC Davis MIND 
Institute Molecular Laboratory as previously described 
(25,32), except 67 alleles extracted and genotyped 
in Italy, following IRB approved protocols at the 
correspondent institutions. Only AGG interruption 
patterns of unrelated normal alleles less than or equal to 
40 CGG repeats in length, therefore within the normal 
size range (33-35), were included in the study.

2.2. Statistical analysis

Distributions of categorical variables were compared 
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CGG repeats were the most common allele sizes in 
all 9 populations. Indonesia was the only population 
with a greater proportion of alleles with 29 (39%) than 
30 (28%) CGG repeats. Two AGG interruptions were 
present in at least 56% of the alleles genotyped for each 
population; 1 AGG interruption occurred in at least 
11% of the alleles genotyped (Figure 2, Table 1).

3.1. The distribution of total CGG length, pure CGG 
stretch, and number of AGG interruptions differs 
between populations

The mode of total CGG length was 30 in subjects from 
all countries examined except in Indonesia where it was 
29 (Figure 3). The relative proportions of subjects with 
a total of 29 CGG repeats, 30 CGG repeats, or a value 
other than 29 or 30 differed significantly by country (p 
< 0.001) (Table 1). Likewise, the relative proportions 
of subjects with a pure stretch of 9 CGG repeats, 10 
CGG repeats, or a value other than 9 or 10 differed 
significantly by country (p < 0.001). Examination of 
adjusted residuals suggests that significantly more 
alleles from Australia (p < 0.001), Emirates (p = 0.007) 
and Spain (p < 0.001) had total CGG lengths other 
than 29 or 30 and Australia (p < 0.001) and Spain 
(p < 0.001) had pure stretch lengths other than 9 or 

among countries using chi-square tests. Chi-square 
test p-values were obtained by Monte Carlo simulation 
when the sample size assumptions for use of the chi-
square distribution were not met.
 In order to identify specific AGG interspersion 
patterns, total CGG lengths, pure CGG stretches, 
or AGG interruptions whose frequency in a given 
population was significantly higher or lower than would 
be expected under homogeneity, the adjusted residuals 
from the chi-square table (36) were compared to a 
standard normal distribution and the resulting p-values 
were adjusted for multiple testing using the Bonferroni 
correction. All analyses were conducted using R, 
version 2.13.0 (37). 

3. Results

In the nine populations we determined the number and 
position of the AGG interruption within each CGG 
alleles and thus determined the AGG interruption 
pattern in 3,065 alleles. We observed 30 different 
CGG repeat lengths ranging from 9 to 40 CGG repeats 
and 231 different AGG interruption patterns, each 
allele contained no AGG interruptions up to 3 AGG 
interruptions. Consistent with previous population 
based studies of the CGG repeat locus, 29 and 30 

Figure 1. The distribution of 25 global populations with AGG interruption patterns described. AGG interruption patterns 
were compared between the 9 newly characterized cohorts (a-i, in green) and with previously published studies (j-y, in red). 
Populations from previous studies were combined if geographical proximity was present to increase sample sizes. Cohorts with 
samples collected from high-risk populations are denoted with an asterisk, total sample size for each cohort and the studies 
reporting their AGG patterns are provided next to the cohort's name.
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10 repeats. Further, significantly more alleles from 
Indonesia (p < 0.001) had a total length of 29 CGG 
repeats, and significantly fewer USA (p < 0.001) alleles 
had total CGG lengths other than 29 and 30. Indonesia 
had significantly fewer alleles with a pure stretch of 10 
CGG repeats (p < 0.001), Spain had fewer alleles with a 
pure stretch of 9 CGG repeats (p < 0.001) and USA had 
more alleles with 10 pure CGG repeats (p < 0.001) than 
was expected under homogeneity, where homogeneity 

would assume the same allele frequencies are present 
between populations.
 The proportion of alleles with 3 AGG interruptions 
differs significantly by country (p < 0.001) (Table 
1); examination of adjusted residuals suggests that 
significantly more alleles from Indonesia (p < 0.001) 
and Australia (p < 0.001), and significantly fewer from 
USA (p = 0.005) had AGG interruptions than was 
expected under homogeneity.

3.2. AGG interspersion patterns by country

The most common AGG interspersion pattern was 
10-A-9-A-9 in all countries except Indonesia. In 
Indonesia the most common AGG interspersion 
pattern was 9-A-9-A-9, 10-A-9-A-9 was the second 
most common pattern. The distribution of AGG 
interspersion patterns differed significantly by country 
(p < 0.001) and the most common patterns are shown 
in Supplementary Table 1 (http://www.irdrjournal.com/
docindex.php?year=2014&kanno=4). Examination 
of adjusted residuals suggested that significantly more 
alleles from Australia had the patterns 9-A-9-A-9-A-9 
(p < 0.001, 8%), 9-A-9-A-19 (p = 0.012, 2%), and 10-
A-9 (p < 0.001, 11%); significantly more alleles from 
the Emirates had the pattern 10-A-10-A-9 (p < 0.001, 
6%), 11-A-9-A-9 (p = 0.022, 2%), and 9-A-10-A-9 (p 
< 0.001, 7%). Indonesia had significantly more alleles 
with 30 CGG repeats and no AGG interruptions (p = 
0.010, 2%), 9-A-13 (p < 0.001, 3%), 9-A-22 (p < 0.001, 
3%), 9-A-9-A-9 (p = 0.004, 35%), and 9-A-9-A-6-A-9 
(p < 0.001, 6%) patterns; significantly more Spanish 
alleles had the patterns 10-A-9 (p < 0.001, 9%), 13-
A-9 (p = 0.013, 4%) and 9-A-12-A-9 (p < 0.001, 4%), 
and significantly more USA alleles had the pattern 
10-A-9-A-9 (p < 0.001, 44%) than was expected under 
homogeneity. Likewise, fewer alleles from Australia 
and Spain had the pattern 9-A-9-A-9 (both p < 0.001, 9% 
and 14%, respectively), fewer alleles from Indonesia 
have the pattern 10-A-9-A-9 (p < 0.001, 21%), fewer 

Figure 2. Distribution of number of AGG interruptions. 
For the nine newly characterized populations the proportion 
of alleles with 0 to 3 AGG interruptions is graphically 
represented. Alleles with 2 AGG interruptions were the most 
common in each cohort, followed by 1 AGG interruption. 
Four AGG interruptions were observed in Australia, United 
Arab Emirates, Indonesia, and Spain only. Within the nine 
populations no alleles were identified with more than 3 AGG 
interruptions.

Table 1. Summary of allele structure in nine populations

Items

Total length
      29
      30
      Other

Pure Stretch
      9
      10
      Other

Number of AGG
      0
      1
      2
      3

 Australia

  23 (11%)
  72 (36%)
106 (53%)

  34 (17%)
100 (50%)
  67 (33%)

    6 (3%)
  63 (31%)
114 (57%)
  18 (9%)

   Chile

19 (25%)
41 (53%)
17 (22%)

17 (22%)
48 (62%)
12 (16%)

  3 (4%)
13 (17%)
61 (79%)
  0 (0%)

Emirates

  58 (22%)
104 (40%)
101 (38%)

  57 (22%)
136 (52%)
  70 (27%)

  13 (5%)
  44 (17%)
198 (75%)
    8 (3%)

Guatemala

  47 (31%)
  71 (47%)
  33 (22%)

  43 (28%)
  75 (50%)
  33 (22%)

    6 (4%)
  19 (13%)
126 (83%)
    0 (0%)

Indonesia

122 (39%)
  86 (28%)
104 (33%)

139 (45%)
  78 (25%)
  95 (30%)

  16 (5%)
  56 (18%)
214 (69%)
  26 (8%)

  Italy

11 (16%)
30 (45%)
26 (39%)

11 (16%)
35 (52%)
21 (31%)

  5 (7%)
12 (18%)
50 (75%)
  0 (0%)

  Mexico

  96 (35%)
106 (38%)
  75 (27%)

  96 (35%)
127 (46%)
  54 (19%)

    3 (1%)
  55 (20%)
216 (78%)
    3 (1%)

  Spain

  56 (16%)
143 (40%)
159 (44%)

  56 (16%)
190 (53%)
112 (31%)

  16 (4%)
  89 (25%)
246 (69%)
    7 (2%)

    USA

413 (30%)
677 (50%)
269 (20%)

422 (31%)
756 (56%)
181 (13%)

  28 (2%)
161 (12%)
1148 (84%)
  22 (2%)
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alleles from USA had the pattern 10-A-9 (p < 0.001, 2%) 
than was expected under homogeneity.
 In 201 normal alleles genotyped from Australia, we 
observed 74 AGG interruption patterns (Supplementary 
Table 1; http://www.irdrjournal.com/docindex.
php?year=2014&kanno=4). A larger proportion of 
alleles were in the high normal range than observed in 
the other populations, between 32 and 40 CGG repeats 
in length, and approximately 9% of the genotyped 
alleles contained three AGG interruptions. In 77 normal 
alleles genotyped from Chile, 17 AGG interruption 
patterns were present. In 151 normal alleles genotyped 
from Guatemala 39 AGG interruption patterns were 
observed however no remarkable patterns were 
observed. In 263 normal alleles genotyped from the 
United Arab Emirates, 77 different AGG interruption 
patterns were observed out of which twenty were only 
observed in the Emirates population. Approximately 
1% of the alleles had 3 AGG interruptions. In the 312 
normal alleles genotyped from Indonesia, 60 AGG 
interruption patterns were observed. A large portion 
of normal alleles with 3 AGG interruptions (8%), with 
the majority of these alleles having the 9-A-9-A-6-A-9 
pattern (6.4% of patterns) was observed in Indonesia. 
The 9-A-9-A-6-A-9 pattern and CGG length of 36 
repeats has been observed in previous studies to occur 
within Indonesian and Asian cohorts (30,38,39). Fifty 
AGG interruption patterns were observed in 277 FMR1 

alleles genotyped from Mexico. Six distinct AGG 
interruption patterns were observed only in the Mexico 
cohort, although these were each observed only once. 
Eighty-four AGG interruption patterns were observed 
in 358 normal alleles from Spain. Eleven AGG 
interruption patterns were only observed in the Spain 
cohort. Twenty-four AGG interruption patterns were 
observed in 67 normal CGG repeat alleles from Italy. 
Three patterns were observed in the Italy cohort only. 

3.3. Regional differences in frequencies of AGG 
interruption patterns were observed within the USA 
samples (Chicago and Sacramento area)

The largest cohort of this study was from the United 
States, and consisted of samples from a larger collection 
of newborn blood spots that were collected in both the 
Sacramento and Chicago area (32). The Chicago cohort 
was comprised of individuals identified as Caucasian 
(n = 153 alleles), African American (n = 225 alleles), 
Hispanic (n = 223 alleles), Asian (n = 42 alleles), 
Southeast Asian (n = 14 alleles), Native American (n = 
14 alleles), and other (n = 5 alleles). The Sacramento 
cohort was comprised of individuals identified as 
Caucasian (n = 156 alleles), African American (n = 
24 alleles), Hispanic (n = 123 alleles), Asian (n = 
42 alleles), Pacific Islander (n = 6 alleles), Native 
American (n = 4 alleles), and other (n = 328 alleles).

Figure 3. Histogram of total CGG length for 9 populations. The most common total length of CGG repeat sizes for the 
9 populations are 30 and 29 CGG repeats, 30 is the most common for every population except Indonesia. Populations show 
difference in less prominent modes including some previously identified (20 CGG repeats, 23 CGG repeats, and 36 CGG 
repeats).
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 There were 105 AGG interruption patterns observed 
in 1,359 normal alleles. Twenty-five AGG interruption 
patterns were observed in the USA cohort and were not 
observed in the other 9 populations. 
 The most common total CGG length in both 
Sacramento and Chicago was 30, pure CGG stretch 
was 10, and number of AGG interruptions was 2 
(Supplementary Figure 1; http://www.irdrjournal.com/
docindex.php?year=2014&kanno=4). Compared to 
Chicago, Sacramento had a higher frequency of alleles 
with total CGG lengths of 30 and pure CGG stretches 
of 10 than would be expected under homogeneity (both, 
p < 0.001). The two cities were similar in the proportion 
of alleles with a pure stretch that was greater than 20 
CGG repeats (p = 0.2322), and a total length that was 
greater than 35 CGG repeats (p = 0.7471).
 The proportion of alleles with 3 interruptions did not 
differ significantly between Sacramento and Chicago (p 
= 0.8271). The most common pattern in both cities was 
10-A-9-A-9. However, the overall distribution of AGG 
interspersion patterns differed significantly between 
Sacramento and Chicago (p < 0.001). Examination 
of adjusted residuals reveals that more alleles in 
Sacramento had the pattern 10-A-9-A-9 (p < 0.001) and 
more alleles in Chicago had the pattern 9-A-9-A-9 (p = 
0.043) than would be expected under homogeneity.

3.4. Previously studied populations

The data from the 9 populations were compared with 
data from previously published studies including 
samples collected and sequenced from Quebec (11), 
Taiwan (40), Norway, Saami, Nenets (41), Greenland 
(42), African American (43), Denmark (16), Basque 
(44), Caucasian, Mataco, Tibet, Navajo, Borneo, 
Mandenka, Wolof, African American (19), Brazil 
(45), China, Malay, India (17), and sub-saharah 
West Africa (46). AGG interruption patterns were 
determined by mnl I digestion for samples collected 
from England, Hispanic American, African American, 
and Asian American (5), Tunisian Jews, Sephardic 
Jews, Ashkenazic Jews, and Arabs (18), Suriu, Mayan, 
Karitiana, Baka, Mbuti, and Hutterite (7). 
 Collections were combined as indicated in Figure 
1 in order to increase sample sizes; alleles from the 
Navajo population were excluded because they did not 
reach a sufficient sample size. The distribution of total 
CGG repeats length, pure CGG stretch, and number of 
AGG interruptions was significantly different in the 
25 global populations. Seven populations had higher 
proportions of alleles with more than 35 CGG repeats 
(Asian, p < 0.001; Australia, p < 0.001; Caucasian, p 
= 0.013; Denmark, p = 0.001; Greenland, p < 0.001; 
India, p < 0.001; and Indonesia, p = 0.007). Four 
populations had a larger proportion of alleles with less 
than 35 CGG repeats (Chile, p = 0.016; Guatemala, p 
= 0.016; Hispanic American, p = 0.044; and USA, p < 

0.001). When pure CGG repeat stretch was compared 
in the 25 populations, 6 populations (Australia, p 
< 0.001; Africa, p = 0.001; African American, p = 
0.043; Basque, p = 0.043; Indonesia, p = 0.001; and 
Jewish & Arabic, p < 0.001) had higher frequencies of 
alleles with greater than 20 pure CGG repeats. Seven 
populations (Asia, p < 0.036; Greenland, p = 0.014; 
Hispanic American, p = 0.006; Malay, p = 0.004; and 
USA, p < 0.001) had higher frequencies of alleles with 
less than 20 pure CGG repeats. The populations with 
highly interspersed alleles included Asia (p < 0.001), 
Australia (p = 0.002), Greenland (p < 0.001), India (p < 
0.001), Indonesia (p < 0.001), and Malay (p = 0.034); 
the USA had significantly less AGG interruptions then 
expected under homogeneity (p < 0.001).

4. Discussion

Differences in the frequency of AGG interruption 
patterns within the CGG repeat locus of FMR1 have 
been previously reported to vary between ethnicities, 
and suggested that such differences can affect the 
mutation rate of this locus. We have genotyped 3,065 
alleles from 9 global cohorts to investigate how AGG 
interruption patterns vary between geographic and 
ethnic populations. The distribution of CGG repeat total 
length, and AGG interruption patterns were found to be 
significantly different between populations. Consistent 
with previous studies two AGG interruption patterns, 
10-A-9-A-9 and 9-A-9-A-9, were the most common in 
all nine populations reported in this study, and in the 14 
previously published population studies (Supplementary 
Table 1; http://www.irdrjournal.com/docindex.
php?year=2014&kanno=4). 10-A-9-A-9 was the most 
common allele for all populations except in the African 
American, Asia, Indonesia, and Malay, Borneo, and 
Tibet cohort where 9-A-9-A-9 was the most common 
pattern. The frequency of the 9-A-9-A-9 pattern in Asian 
ethnic groups was consistent with what has previously 
been shown (17,40), and in the African American group 
the 9-A-9-A-9 pattern was only 1% higher in frequency 
than the 10-A-9-A-9 pattern. It is unknown whether 
these two patterns have a biological advantage, however, 
CGG repeat length in the normal allele has been shown 
to alter translational efficiency (47) with the highest 
translational efficiency occurring at 30 CGG repeats. 
Thus, the common lengths may provide alleles within 
the optimum size range with the lowest mutation rate.
 We combined the AGG interruption pattern results 
of the 9 population cohorts genotyped for this study 
to the 16 cohorts from previous published studies. 
The results showed that six populations had a higher 
frequency of alleles with a total length greater than 35 
repeats, and five populations had a higher frequency 
of alleles with an uninterrupted stretch greater than 
20 repeats. Australia, Denmark, and Quebec had both, 
suggesting that an increased frequency of expanded 
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alleles, intermediate, premutation, and full mutation 
alleles may be present in these populations. It should 
be noted that as the Australian cohort was part of a 
high risk screening study, a sample bias affecting 
these results could be present given that intermediate 
prevalence rates were found to be increased compared 
to the general population (28). However, only alleles not 
greater than 40 CGG repeats were included in this study 
and importantly the distribution of CGG repeat length 
was not statistically different from the one observed in 
a group of 3,091 alleles (1,091 male and 2,000 female 
alleles) derived from Australian newborns from the 
state of Victoria (p = 0.3052). In these two population-
based samples the frequencies of GZ alleles were 1.3% 
(> 40 CGG repeats) and 0.4% (> 44 CGG repeats), in 
male newborns; and 5.5% (> 40 CGG repeats) and 1.4% 
(> 44 CGG repeats), in female newborns (unpublished 
data). The frequency of premutation alleles was 0.3% 
in both male and female samples. In Canada prevalence 
estimates for intermediate alleles is 1:86 in females, 
and for premutation alleles is 1:813 in males and 1:241 
in females (Dombrowski et al., 2002). No prevalence 
estimates are available for the Denmark population. 
These prevalence rates are not higher than those 
estimated in other populations and also we do not have 
any information regarding whether these prevalence 
rates are increasing or decreasing with generation. 
 Guatemala, Hispanic American, Mexico, and USA 
cohorts had a smaller proportion of alleles in the high 
normal range, and a smaller proportion of alleles with 
greater than 20 uninterrupted CGG repeats, suggesting 
increased stability of the normal allele in these 
populations. However, both Guatemala and Mexico 
cohorts were collected for high risk screening studies, 
and sample collection bias may also be present in these 
two populations. In the USA population prevalence 
rates for intermediate alleles were estimated to be 1:112 
for males and 1:66 for females, and for premutation 
alleles were estimated to be 1:430 for males and 1:209 
for females (32). The Hispanic American, Guatamala, 
and Mexico populations do not have estimated 
prevalence rates. The prevalence estimates for the USA 
population are neither in agreement or disagreement 
with the population having an increased stability 
compared to the other studied populations.
 A comparison of Sacramento and Chicago showed 
similarities in the distribution of AGG interruption 
patterns, and the proportion of alleles in the high 
normal and intermediate range, and with more than 
20 uninterrupted CGG repeats (Supplementary 
Figure 1; http://www.irdrjournal.com/docindex.
php?year=2014&kanno=4). Interestingly, Sacramento 
has an increased prevalence of premutation alleles 
(males, 1:305; females, 1:172) when compared to 
Chicago (males, 1:308; females, 1:894) (32). Both 
cohorts were collected and genotyped in the same study 
and were collected as part of a pilot study newborn 

screening for FXS. 
 One limitation of this study is the possible sampling 
bias within the six newly described population cohorts 
that were collected from high-risk screening studies. 
A sample bias may also likely be present in the 
Sacramento and Chicago cohorts that make up the 
USA population because AGG interruption data was 
available mainly for samples that were genotyped by 
the CGG linker PCR assay (32) when initial genotyping 
of females resulted in only one allele. Another 
limitation of this study, and of the other published 
studies, is represented by the small sample sizes. The 
expected variability introduced by sampling error 
inhibits strong comparisons between prevalence rates of 
intermediate, premutation, and full mutation alleles and 
AGG interruption pattern distribution; limitations that 
could be reduced with increasing cohort sizes.
 The AGG interruption patterns within the CGG 
repeat locus of FMR1 further characterize the alleles 
beyond repeat length. The results of the study agree 
with what is known about the CGG repeat distribution 
in the nine countries, including increased frequency of 
the 9-A-9-A-6-A-9 pattern in Asian ethnicities where 
the 36 CGG repeat length is more frequent. Population 
structure is important to consider when studying the 
CGG repeat locus, sub-populations have consistently 
shown significant differences in the literature, including 
differences between ethnic and geographic groups. 
Our results suggest that AGG interruption pattern 
distributions in populations could be associated with 
differing prevalence of categorically non-normal alleles, 
however larger cohort sizes and more prevalence rates 
will be needed for many ethnicities to confirm these 
observations. 
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1. Introduction

Fragi le  X-associated t remor/ataxia  syndrome 
(FXTAS) (OMIM: 300623) is a late-onset progressive 
neurodegenerative disorder with core features of 
intention tremor and gait ataxia affecting carriers of 
premutation repeat expansions (55-200 CGG repeats) 
in the 5' UTR region of the FMR1 gene. This syndrome 
affects mainly men, and the mean age of onset is 62 
years with incomplete penetrance (1,2).
 Other conditions such as chronic pain related to 
neuropathy (3,4), fibromyalgia (5-7) and migraines 
(8) are commonly reported symptoms by individuals 
with FXTAS, and in general observation, narcotics 
are often used to treat the pain symptoms. Moreover, 
anxiety, depression and other psychiatric disorders are 
also reported with a higher prevalence in premutation 
carriers, and self-treatment using addictive substances 
is increased compared to controls (9,10). 
 While there has been no comprehensive study 

regarding the role of addictive substances in onset, 
progression, and severity of neurological symptoms in 
FXTAS, it is hypothesized that the clinical symptoms 
can be triggered by environmental factors. General 
examples of this phenomenon include alpha-1 
antitrypsin, in which smoking can exacerbate lung 
disease (11), and hemochromatosis in which alcohol 
intake results in liver disease (12). Some environmental 
factors, such as chemotherapy, have been reported to 
exacerbate or induce earlier presentation of clinical 
symptoms in FXTAS (9). In addition previous studies 
in the general population have shown that chronic use 
of addictive substances has negative consequences on 
cognition, memory and other neurological functions. 
Therefore, we propose that addictive substances 
particularly opiates, alcohol and cocaine may contribute 
to a faster progression of neurological symptoms in 
FXTAS. Here we present two cases of adults with 
FXTAS with a long history of addictive substance use, 
including opiates, alcohol and cocaine.

2. Case reports

Case 1, a 79 year-old Caucasian woman who was 
initially evaluated at the UC Davis MIND Institute 

Summary A debilitating late-onset disorder of the premutation in the FMR1 gene is the 
neurodegenerative disorder fragile X-associated tremor ataxia syndrome (FXTAS). We 
report two patients with FXTAS who have a history of substance abuse (opiates, alcohol, and 
cocaine) which may have exacerbated their rapid neurological deterioration with FXTAS. 
There has been no case report regarding the role of substance abuse in onset, progression, and 
severity of FXTAS symptoms. However, research has shown that substance abuse can have 
a negative impact on several neurodegenerative diseases, and we propose that in these cases, 
substance abuse contributed to a faster progression of FXTAS as well as exacerbated white 
matter disease.

Keywords: Substance abuse, neurological deterioration, FXTAS, premutation, opiates
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clinic in 2007, had alleles of 30 and 73 CGG repeats 
with an X-chromosome activation/inactivation ratio 
of 0.71 (Figure 1). Her medication history includes 
codeine with varying doses since age 54. She started on 
high dose Vicodin (hydrocodone and acetaminophen, 
10 mg/300 mg) at age 75, which she was still taking at 
age 79 (12 tablets a day). She reported the onset of her 
neurological symptoms at age 54 and she complained 
of strong intermittent generalized pain which was more 
severe in her lower extremities and back. She was 
diagnosed with fibromyalgia at age 58. The patient 
showed a rapid neurological decline at age 77, when she 
started to experience handwriting problems, swallowing 
difficulties, cognitive deficits, frequent falling related 

to lower extremity weakness and the necessity of 
using a four pronged cane. Her pain intensified and her 
weakness worsened to the point she needed to use a 
walker at age 78. The neurological symptoms continued 
to progress so that she was unable to even sit and 
finally spent most of her time in bed (FXTAS stage 6). 
In bed, she was unable to lift her legs against gravity at 
age 79. She developed respiratory difficulties that were 
exacerbated by pneumonia and she died at 79 years of 
age. Her MRI at age 78 shows periventricular white 
matter lesions affecting the anterior and posterior horns, 
bilaterally, and moderate cerebral and mild cerebellar 
volume loss (Figure 2). 
 Case 2, a 55-year-old Caucasian male, presented at 
the UC Davis MIND Institute clinic in 2010. He had 
100 CGG repeats (Figure 1). He has a long history 
of significant alcohol and cocaine abuse. He started 
to smoke marijuana daily in 1998, to help him with 
chronic pain. He used Vicodin (hydrocodone and 
acetaminophen, 10 mg/300 mg) three times a day on 
and off since the age of 35. He has a long psychiatric 
history including severe anxiety, depression, and post 
traumatic stress disorder (PTSD), particularly after he 
was in a vehicle accident at age 36. His neurological 
symptoms at age 35 included numbness, tingling, and 
pain in his lower and upper extremities. He had hand 
writing problems since about age 45. He has a history 
of intention tremor, beginning at age 51, and occasional 
resting tremor, as well as balance problems at age 51, 
and swallowing and choking problems since about 
age 53. Head tremor was observed at age 54. His MRI 
at age 55 showed moderate cerebellar and cerebral 
volume loss, mild increased T2 signal intensity in the 
middle cerebellar peduncles (MCPs), a moderately thin 
truncus of the corpus callosum, with severely increased 
T2 signal intensity in both the truncus and the splenium 
of the corpus callosum (Figure 2). 

3. Discussion

Premutation carries have a susceptibility to develop 
a variety of symptoms such as neurodevelopmental 
disorders (13-16), psychiatric involvement (17-19), 
immune dysregulation (5-7,20-23), and neurological 
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Figure 1. Southern blot results of two patients. 1Kb ladder 
size marker: lane 1 and 6. Lane 2 and 5: normal female 
control and full mutation male, respectively. Lane 3 and 4 
showing the presence of a premutation allele in patient 1 and 
2 respectively. CGG repeat sizes were measured by PCR 
analysis.

Figure 2. Tesla MRI (1.5): T1 (A1), T2 FLAIR (A2), T2 
(A3). 3 Tesla MRI: MPRAGE (B1), T2-FLAIR (B2), T2-
TSE (B3); shown by arrows: Case 1: Moderate cerebral (A1) 
and mild cerebellar (not shown) volume loss, periventricular 
white matter lesions affecting anterior and posterior horns, 
bilaterally (A2). No white matter changes in the middle 
cerebellar peduncles (A3). Case 2: Moderate cerebral (B1), 
mild increased white matter changes in the middle cerebellar 
peduncles (B3) and pons (B2), moderately thin truncus of 
the corpus callosum (B2), with severe increased T2 signal 
intensity in both the truncus and the splenium of the corpus 
callosum (B2). 

Figure 3. Median onset of pain symptoms, tremor, ataxia, 
falls, dependence on walking aid and death in two patients 
with FXTAS and addictive substance abuse.
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hypothesis that environmental exposures (in this 
case addictive substances) may have exacerbated the 
neurological symptoms of FXTAS, including tremor, 
ataxia and cognitive decline. We recommend avoiding 
the overuse of opiates for pain management and also 
early treatment of depression and anxiety in patients 
with the fragile X premutation, and especially with 
FXTAS.
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1. Introduction

Technology provides an invaluable support for 
enhancing adaptive skills and learning for individuals 
with neurodevelopmental disabilities (1). Digital 
technology can improve communication, support 
social interaction, enhance learning tasks and personal 
independence and increase leisure time in daily life (2). 
However, there is only very little research on the impact 
of innovative technology, communication devices, 
touch-screen tablets, and educational applications (3).
 In the last ten years, the National Center for 
Technology Innovation (NCTI) has been following 

changes in educational and assistive technology (AT), 
which has shifted into a more portable, networked, 
customizable, and multitasking approach converging 
in touch interface devices which, additionally, are 
widely used by the general population (4). Touch 
screen devices, such as Apple iPad® emerged in 
2010, while not specifically designed for education 
or developmental interventions, have already proven 
to be suitable for therapeutic and educational benefits 
in disorders such as autism (5) and schizophrenia (6). 
Despite the increased technological research interest 
in the field of neurodevelopmental disorders and the 
current application in the clinical practice for education, 
and promoting communication, there is no research 
which involves the use of touch-screen devices in 
children with Fragile X syndrome (FXS). Advances in 
our understanding of the neurobiological basis of FXS 
have led to new targeted treatments for the disease (7). 
However, very little progress has been made regarding 

Summary The use of touchscreen applications for the iPad® allows children with disabilities to 
improve their personal autonomy and quality of life. In light of this emerging literature 
and our clinical experience with toddlers and children with Fragile X syndrome (FXS), 
a randomized clinical trial pilot study was conducted of whether an interactive iPad®-
based parent training program was efficacious for both individuals with FXS and autism 
spectrum disorder aged 2-to-12 compared to wait-listed controls. As a second goal, 
we assessed the difference between direct person-to-person therapy vs. online therapy 
sessions through telehealth. In this case series report it is presented preliminary results of 
four individuals with FXS enrolled in the study and described the innovative experience 
including qualitative and quantitative data analysis. Furthermore, we provide professionals 
with specific guidelines about the use of touchscreen devices as in-home learning tools 
and parent training strategies to actively involve families in educational treatments in 
conjunction with clinical guidance. 

Keywords: Touchscreen devices, educational applications, parent training, innovative therapy
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educational interventions mainly consisting of speech-
language therapy (SLT), occupational therapy (OT) 
and behavior management therapy (ABA) (8). Many 
of our families have incidentally found that a variety of 
learning applications for tablets can be helpful for their 
children, but there have been no controlled trials or 
standardized guidelines for their use in FXS so far.
 FXS is the most common inherited cause of 
intellectual disability with a prevalence of 1 in 
5,000 males (9) and 1 in 8,000 females (10). It is 
the most common genetic disorder associated with 
ASD (11-13). Individuals with FXS show a specific 
behavioral phenotype of co-occurring conditions 
including hyperactivity, short attention span, anxiety, 
social avoidance, difficulty maintaining eye contact, 
difficulties in sensory processing, lack of reciprocity in 
relationships, stereotyped behaviors and seizures (14). 
FXS is caused by expansion of a trinucleotide repeat in 
the FMR1 gene. The production of FMRP, the FMR1 
gene product, is significantly diminished or absent in 
FXS because of methylation of the CpG island at the 5' 
end of FMR1, thus silencing the gene (15). Studies show 
that approximately 2 to 5% of people with an ASD carry 
the fragile X mutation, and 60% of those with FXS have 
ASD (16,17). In general those with FXS plus autism 
have more anxiety, but more sociability than those with 
idiopathic autism (18).
 The combination of intensive educational support and 
psychopharmacological interventions has remarkable 
effects on behavior and cognition in children with FXS 
(19). The main purpose of any behavioral interventions 
in FXS is not only to reduce or eliminate the unwanted 
behavior, but also to teach children socially appropriate 
behavior to enhance cognitive and social skills that can 
be generalized to other settings outside the therapeutic 
or academic environment (8). We believe strongly 
that technology is increasingly contributing to this 
generalization in our patient population. 
 The goal of the present study is to provide 
information to educate, facilitate, and document the 
power of touchscreen technology for individuals with 
FXS, and to describe the best practices in the use of 
the iPad® for promoting learning and interaction in 
family settings. This research will provide insights for 
future professionals (teachers, clinicians, application 
developers, therapists, researchers, etc.) and families 
hoping to meaningfully use computer tablets to help 
children with neurodevelopmental disorders. Devices like 
the iPad®, have an abundance of available educational 
and recreational applications (20) that easily support the 
Universal Design for Learning(UDL) framework for 
making a curriculum more inclusive for individuals with 
special needs. Therefore, specialized digital therapies 
are essential for addressing developmental challenges 
in those with FXS and for other neurodevelopmental 
disorders, although there is little research regarding their 
efficacy. In addition, interventions that showed efficacy 

for ASD such as Pivotal Response Treatment (PRT), 
Applied Behavior Analysis (ABA), Early Start Denver 
Model (ESDM), etc. have not been specifically studied 
in individuals with FXS.
 On the other hand, caring for a child with complex 
disabilities such as FXS may have negative impact on 
both the physical and the mental health of the parents 
and caregivers (21). Parental stress could be child-driven 
(22); however, interventions that improve the child's 
functioning and communication may be expected to 
decrease the parents' stress level. Therefore, the impact 
of parent-delivered intervention based on an iPad® 
intervention could go beyond the educational goals and 
reduce parental stress through an unknown mechanism. 
However, to our knowledge, no outcome studies have 
focused on intervention programs for children with FXS 
that combine parent-delivered one-on-one behavioral 
iPad®-based intervention along with learning apps. 
In this sense, support to parents can also be provided 
remotely by a telehealth approach, a mechanism that 
enables individuals to receive professional guidance and 
effective recommendations from a distance (23) and 
may involve several multimedia platforms from real 
time video streaming to interactive website and tablet 
applications that can be effortlessly accessed at any time 
and location and shared across settings and individuals 
(24). Current studies implementing telehealth have 
already demonstrated encouraging results in training 
professionals and family members in ABA behavior 
management procedures (25), and successful outcomes 
in training parents of children with ASD in specific 
intervention models such as the ESDM (26).
 The current series report presents 4 cases, belonging 
to a larger randomized controlled trial (RCT) cross-
over design (n = 18), to describe the challenges and 
benefits of an innovative in-home iPad®-centered 
parent-delivered intervention on social interaction 
skills, language development, and academic gains 
(early concepts and literacy) in children with FXS. The 
report also describes qualitative differences between 
those patients seen at the MIND Institute for weekly 
outpatient therapy sessions vs an online follow-up 
modality (telehealth). The underlying processes such 
as motivation, engagement with technology, parent-
child interaction, and parent satisfaction will be also 
reviewed. This is an effort to provide initial information 
and data to formulate a systematic guideline of what 
we believe is an innovative promising intervention for 
children with FXS and their families.

2. Methods

2.1. Participants

The 4 cases with a fragile X full mutation were selected 
from alarger randomized clinical trial study (crossover 
RCT) (n = 18), MIND APPs, for an iPad®-based 
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therapeutic parent training for enhancing language 
development, social interaction skills, and learning in 
children with FXS and ASD. Of the 4 cases 2 individuals 
are female and 2 are male, the mean age is 6.2 years 
old (SD 3.05 years) with a mean IQ of 73.5 (SD 18.8). 
The current aforementioned RCT (Díez-Juan et al. in 
preparation) was conducted at the Fragile X Research 
and Treatment Center at the University of California 
Davis MIND Institute and it was monitored for safety 
and ethics by the UC Davis Institutional Review 
Board (IRB). All participants and their caregivers 
have signed informed consent and were informed 
about the characteristics of the study with the option 
of conclude their participation at any point before the 
end of the study. The subjects had existing molecular 
results about their genetic status and were administered 
a series of behavior and cognitive assessments. The 
four participants' characteristics are shown in Table 1 
with information about their genotypic and phenotypic 
profile and MIND APPs study characteristics. Families 
were eligible to participate if: i) Child was between 
the ages of 2.0 and 12.0 at the time of enrollment, 
ii) Child had a molecular diagnosis of FXS (with or 
without ASD) or an ASD diagnosis by a clinical team 
with the results of the Autism Diagnostic Observation 
Schedule (ADOS) (27), iii) Child had a reliable parent 
or caregiver able to perform a guided iPad® in-home 
interactive intervention for 32 weeks, iv) No serious co-
morbid medical condition affecting brain function and/
or behavior was present, including uncontrolled seizures, 
and v) Child was not participating in a pharmacological 
trial simultaneously, although subject could be under 
stable medication treatment and any kind of behavioral 
intervention or school condition. Other community care 
such as behavioral interventions, education program and 
other therapies are included in Table 1.
 Participants were randomly assigned to the active 
treatment or wait-list group after baseline assessments. 
The four cases presented in the current report were all 
assigned to the first active treatment group receiving 
the training one time per week in 1-hour sessions 
during 16 weeks. All four families were instructed to 
continue with their child's usual treatments and to report 
every in-home iPad® session through Care Circles® 
application tracking system.

2.2. Genotypic measures

Genomic DNA was isolated from peripheral blood 
leukocytes by standard methods (Qiagen, Valencia, CA). 
CGG size and methylation status were determined using 
Southern Blot and PCR analyses as previously described 
in Tassone et al. (28,29). Total RNA was isolated using 
Tempus tubes (Applied Biosystems, Foster City, CA). 
cDNA synthesis and qRT-PCR used to quantify FMR1 
mRNA levels were performed as described in Tassone et 
al. (30)
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2.3. Phenotypic measures

2.3.1. Baseline measures

The cognitive baseline assessments described in the 
current report, depending on age, included standardized 
IQ tests such as Stanford-Binet Intelligence Scales, 5th 
edition (SB-5) (31); non-verbal IQ and verbal IQ are 
assessed and combined to a full-scale IQ score (M = 100; 
SD = 15); or the Mullen Scales of Early Learning (32) 
developmentally integrated scales for toddlers (M = 50; 
SD = 10). To quantify the severity symptoms of autism 
also in the fragile X population, we used the Autism 
Diagnostic Observation Scale, ADOS (27), which has 
been broadly used in other studies of FXS (16,33). 
ADOS autism calibrated severity score (CSS) was 
determined using the procedures described by Gotham et 
al. (34) in which a higher severity score indicates more 
severe autism features (ADOS classification: 1-3 no 
symptoms; 4-5 ASD symptoms; 6-10 Autism symptoms). 
Finally, the Vineland Adaptive Behavior Scales, 2nd 
edition (VABS-II) (35) were used to determine adaptive 
functioning, like daily life routines, and to identify 
strengths and weaknesses (M = 100, SD = 15).

2.3.2. Outcome Measures

The outcome measures consisted of a battery of 
standardized assessments administered at three time 
points across the duration of the study (baseline, follow 
up 1 after 16 weeks, and follow up 2 after 32 weeks). 
The measures included the Expressive Vocabulary Test, 
Second Edition (EVT2) (36), measuring expressive 
vocabulary and word retrieval (M = 100, SD = 15), 
Preschool Language Scales, Fifth Edition (PLS-5) (37), 
an interactive assessment of developmental language 
skills based on auditory comprehension and expressive 
communication standard scores (M = 100, SD = 15), 
and the Process Assessment of the Learner, Second 
Edition (PAL-II) (38), measuring a variety of reading 
and writing processes for children in Kindergarten to 
Grade 6 (K-6). PAL-II subtests and composite scaled 
scores are derived from normative data and have a 
mean of 10 and a standard deviation of 3.
 A Likert-scaled Parent Satisfaction Survey (scores 
1-5) specifically designed for the purposes of the study 
was used to measure the level of parent satisfaction 
towards particular components of the iPad®-based 
training program at the end of the intervention. Higher 
scores mean better satisfaction levels referring to eight 
particular treatment domains: i) STeachIntervention, 
the study helps you to better teach your child using 
the iPad® for interaction with you, ii) SProgInter, 
level of progress in shared interactions you observed, 
iii) SComm, level of progress in communication, 
iv) SLang, progress in language (expressive and 
receptive), v) SAcadem, progress in academic learning, 

vi) SPConfident, parent's confidence about helping 
the child with the iPad® for educational purpose and 
interaction, vii) SSClinical, satisfaction with the clinical 
guidance, and viii) SProgApps, satisfaction with the 
program of educational applications provided. Figure 
1 summarizes the parent's satisfaction scores for each 
scale after the active treatment.

2.4. Procedures and timeline

The intervention program for the individuals in 
the present case series consisted of 2 periods of an 
iPad®-based intervention program. The first period is 
guided intervention with a therapist and the second 
is a maintenance period without the therapist. The 
initial active period consisted of a 16-week long, low-
intensity (1-hour/week of therapist/clinical guidance 
and parent-delivered intervention (3-hour/week in-
home sessions) with an estimated average of 64 hours 
of iPad® intervention during the 16 weeks. During the 
maintenance period no clinical guidance was provided 
and only the parent-delivered 3-hour/week of in-
home intervention was administered by following the 
guidelines learned in the previous period.
 The clinical guidance and supervision across the 
16 weeks was provided on-line or on-site according to 
participants' preferences and consisted of:
 i) General iPad® management orientation to parents 
and child (depending on age): common terms of use, 
multitasking gestures, accessibility, guided access, 
Apple Store® operation, code redeeming, applications 
downloading, updating and deleting (Week 1-4).
 ii) Care Circles platform application installation and 
creation of family profile to track in-home iPad® sessions 
and initiate daily parents-professional interactive journal 
(Week 1-4).

Figure 1. Parent Satisfaction Survey (Likert Scale 1–5). 
STeachIntervention = the study helps you to better teach your 
child using the iPad® for interaction with you; SProgInter = 
level of progress in shared interactions you observed; SComm 
= level of progress in communication; Slang = progress in 
language (expressive and receptive); SAcadem = progress in 
academic learning; SPConfident = parent's confidence about 
helping the child with the iPad® for educational purpose 
and interaction; SSClinical = satisfaction with the clinical 
guidance; SProgApps = satisfaction with the program of 
educational applications provided.
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 iii) Weekly review and explanation of educational 
applications and parent-child customized guidance for 
interactive, communicational and learning purposes 
(Week 1-16).
 iv) Establishment of individual family goals 
regarding communication, social interaction, learning 
and behavior through iPad® use (Guidance and 
supervision of goals from week 1-16).
 v) Share progress and handle behavior or learning 
difficulties during iPad® sessions at home (Week 1-16).
 vi) Closure and review of training principles and 
applications, thus parents could continue intervention 
during maintenance period afterwards (Week 14-16).

2.5. iPad®-based training program

The iPad® pilot study's primary aim was to evaluate the 
effects of a comprehensive educative program in which 
parents are receiving individual coaching about the use 
of the iPad® as a learning device and as an interactive 
therapeutic tool for their children.
 T h e  i P a d ®- p r o g r a m  w a s  b a s e d  o n :  i )  A 
comprehensive selection of Apple store educational 
applications, previously reviewed and analyzed by 
experts in the field, which were distributed according 
to three developmental domains (language, social 
interaction and academic learning); ii) Individually-
tailored treatment objectives to the child's individual 
learning profile, dominant interests and family 

educational values; iii) A set of psychoeducational 
strategies substantiated on the principles of broad 
spectrum applied behavior analysis (ABA), cognitive 
techniques about theory of mind and emotions 
management programs, naturalistic learning through 
interpersonal interaction, and meaningful teaching 
approaches. Figure 2 includes the main applications that 
were used during the intervention periods according to 
developmental stages and skill domains.

2.6. Adherence to iPad® intervention

Care Circles® application from the Apple Store® 
was implemented as a digital platform to follow on 
adherence to intervention and to measure the time of 
in-home applied intervention, level of motivation, 
attention and frustration during the parent-child 
interaction at home. An interactive journal was used for 
the family to professional everyday communication.

3. Results

3.1. Case 1 (FXS, boy 2. 9 y)

3.1.1. Personal background

Case 1 is an almost 3-year-old boy diagnosed with FXS 
shortly after birth through cord blood due to positive 
family history (mother, maternal aunt and maternal 

Figure 2. MIND APPs applications program.
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grand-father with the premutation). He did not present 
with hypotonia, had fairly good eye contact, and a 
high energy level, which eventually led to meltdowns 
involving throwing himself to the floor to demonstrate 
frustration. He also presented with attentional problems 
and perseverative behaviors, such as spinning and 
flipping through book pages impulsively. He did not 
have staring spells or seizures, although he showed 
shivering episodes once or twice a day. He had 
prominent ears with ear pinnae cupping bilaterally, 
epicanthal folds and flat feet with mild degree of 
pronation. He showed psychomotor delay (Baseline 
MSEL- Early Learning Composite 55) started walking 
after 15 months, and his overall Adaptive Behavior 
Composite was 75 on the Vineland (VABS-II). He 
presented with a number of autistic behaviors including 
lack of joint attention and language difficulties. At the 
time of the study he also met criteria for developmental 
speech and language disorder (no words at the age of 35 
months) in addition to the ASD features (ADOS CSS 4). 

3.1.2. MIND APPs study involvement, outcomes and 
challenges

At the in-take interview for the iPad® study he had 
developed a sleep disturbance where he would awaken 
two to three times a night. Melatonin was used to treat 
these symptoms together with applied behavior analysis 
techniques (ABA). Parents were applying Early Start 
Denver Model (ESDM) (39) principles at home for 
developmental purposes learned through a telehealth 
study about early intervention in children with FXS (40), 
and he was receiving speech therapy at preschool where 
he also had special support personnel. He was on a 
stable treatment with sertraline and minocycline before 
and throughout the study.
 Parents recently purchased an iPad®, and they had 
limited experience with it before the study. The patient 
was completely unable to actively use the iPad®, and 
the parents mainly used the touch-screen device for 
playing games and entertainment. Family had not used 
educational apps before the study, nor had they received 
any training in using iPad® for promoting parent-
child interaction and learning. The child and parents 
were highly motivated to participate in the study. Case 
1 was trained online through telehealth. The family 
successfully completed the 16-week training, and after-
treatment assessment, nevertheless it was impossible 
to obtain the last follow up due to travelling distance to 
the MIND Institute, and family issues at that time point. 
Right after the active treatment period, parents felt 
better prepared to use the iPad® as an educational tool 
and observed specific areas of improvement such as: 
increased vocabulary, improved language (expressive 
and receptive) and also more precise fine motor skills. 
The patient improved his abilities to sort objects, trace 
lines and solve puzzles. He also enjoyed and learned 

letters, basic counting, shapes and colors. Parents 
reported that "clinical guidance was of key importance" 
in the sense of receiving individualized professional 
guidelines when introducing a new app, and handling 
behavioral challenges during the interaction as reflected 
in the satisfaction survey. 
 Numerous behavioral challenges needed to be 
addressed during the iPad® training for Case 1. 
He presented with low flexibility and concurrent 
repetitive behaviors toward the device and it was not 
his preference to share during the activities with his 
caregivers. Establishing the iPad® time routine together 
was an elaborate process; although once it was part 
of his schedule he accepted it and looked forward to 
it with appropriate requesting of the tasks from the 
parents. Apps of his interest were related to matching 
numbers, letters, shapes, colorful images, music, and 
later on tracing letters and numbers. Caregivers felt 
highly discouraged during the first 4 weeks of the 
training given that Case 1 did not want to collaborate 
and share the iPad® time together. Clinical guidance 
was critical in order to support parents and enhance 
their skills and confidence as essential providers and 
supporters of their child's progress.
 Figure 3 demonstrates an example for a high quality 
parent-child iPad® interactive situation in which joint 
attention, positive social reinforcement and shared 
learning experience can be observed.

3.2. Case 2 (FXS, girl 5 y)

3.2.1. Personal background

Case 2 is a 5-year-old girl with the full mutation who 
has participated in targeted treatments since early in 
life, including sertraline and minocycline trials. She 
showed significant improvement with minocycline and 
sertraline and a good response to early interventions, 
such as occupational therapy, physical therapy 
and language intervention in an enriched in-home 

Figure 3. Case 1♂- Parent-child interactive iPad® time.



www.irdrjournal.com

Intractable & Rare Diseases Research. 2014; 3(4):166-177. 172

environment since the mother has an educational 
background in special needs. She showed adequate 
developmental milestones, walking at 13 months, 
saying first words at 17 months and simple sentences 
after 20 months with a mild delay in later language 
development. She had a very short attention span, and 
it was difficult for her to sit through a whole story and 
follow verbal prompts. She had a sleep disturbance, 
picky eating and anxious behavior towards new 
situations and animals. On early examinations, she 
had a mildly prominent forehead, epicanthal folds, 
hyperextensiblefinger joints and overall normal motor 
tone. She was hyperactive and inattentive throughout 
the study and she met criteria for ADHD. She was 
taking sertraline, minocycline, folic acid and melatonin 
during her participation in the iPad® clinical trial. At 
school she is receiving speech and occupational therapy 
(OT), but no assistive technology was implemented in 
her individualized education plan (IEP).

3.2.2. MIND APPs study involvement, outcomes and 
challenges 

Baseline assessments confirmed intellectual ability in 
the normal range (IQ 97), no ASD diagnosis (ADOS 
CSS 4), and low adaptive skills (VABS II 72). She had 
been using the iPad® since she was eighteen months 
old when the first device emerged on the market. She 
used it mainly by herself for watching cartoons, playing 
fun educational games, and reading stories. She knew 
how to handle the device and she could even create 
folders in the screen herself, which is an advanced skill. 
Parents played together with her about 3 to 4 times 
a week and they knew a great variety of educational 
apps, nevertheless, they never received a parent-
based training in the use of technology for interaction 
targeting language, literacy and social development. 
Parents were motivated to complete the 16-week study, 
and they reported all their iPad® sessions through 
Care Circles® app and completed all the follow-up 
assessments. The patient went through several reactive 
behaviors when the caregiver was trying to share the 
screen together and it took some weeks for her to get 
used to the new "we-work-iPad® -together" routine. 
Once the digital task was part of her daily schedule, she 
became smoothly involved in the interactive dynamic 

with parents and even started to ask them to play 
together. Parents reported moderate satisfaction to the 
psychoeducational program since they also expressed 
concern about the new routine being time consuming 
and overwhelming at particular points. Tracking 
sessions and reporting data was not always convenient 
for them and they wish it could have been addressed 
through a more practical modality. Otherwise they 
identified progress in their child mainly related to an 
enhancement of speech fluency, fine motor skills and 
tracing letters ability. 
 Case 2 presented an impressive advance in tracing 
and basic writing skills, being able to actually trace 
alphabet letter and copy short full words both on screen 
and on paper at the end of the second follow-up after 
the maintenance period. Her main progress turned up 
clearly after 32 weeks of low intensity iPad®-based 
intervention. See Figure 4 regarding the progress at 
baseline, follow-up 1 and follow-up 2 assessments 
through PAL-II, Alphabet Writing task in which the 
child is asked to print the alphabet in lowercase in 
alphabetic order as quickly and accurately as possible. 
Case 2 was only 5 years old at the beginning of the 
study so her scores fell out of PAL-II normative 
data even at the last follow-up assessment (5y 8m). 
Although her writing is performed in uppercase, it is 
possible to observe the improvement of her copy skills 
regarding legibility and accuracy. The main applications 
implemented to practice literacy abilities are listed in 
Figure 2 (Learning apps 2-5 years).

3.3. Case 3 (FXS, boy 6 y)

3.3.1. Personal background

Case 3 is a 6 years and 10 months old boy with FXS and 
high levels of anxiety in crowded situations. He also 
presents global developmental delay (IQ 62), is highly 
inattentive and hyperactive especially in academic 
settings or in a larger group, and his adaptive skills 
are below average (VABS-II 72). He receives OT and 
SLT at school and has a special aid in class. Just before 
enrolling in the study he stopped ABA therapy. He was 
on minocycline and sertraline before and throughout 
the study. Family owned a device for less than a year 
before the study enrollment and usually used it as a 

Figure 4. Case 2 ♀- PAL-II Alphabet Writing Task (Baseline, Follow-up 1 & Follow-up 2).
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reward tool after successfully completing homework 
or chores. Usually he used it to watch cartoons or play 
games. No educational applications were used before 
the trial and he used to play by himself. His mother was 
highly motivated to conduct the treatment at home and 
they properly completed the whole sequence of clinical 
sessions and follow-ups. 
 Case 3 presented with a history of motor and speech 
delay; he walked at 19 months and said first words at15 
months and combined words around 30 months. On 
previous exam he had a slightly long and narrow face, 
mildly prominent ears, hyperextensible finger joints 
and flat feet bilaterally. Behaviorally he did not meet an 
autism diagnosis (ADOS CSS 2) but he had intermittent 
poor eye contact and hand flapping. Under pressure he 
can show some self-injurious behaviors, like biting, and 
has calluses on his right hand, he rocks his whole body 
at times and sucks his thumb when stressed. Eventually 
he can get aggressive and may kick or push others.

3.3.2. MIND APPs study involvement, outcomes and 
challenges

During the study he demonstrated progress in language 
fluency, being able to narrate tales, and also creating 
social stories about his daily life activities and social 
events. The family demonstrated progress in parent-child 
interactions, and implementing the iPad®-time rules, and 
the parents saw moderate improvement in tracing letters 
and spelling short words. They commented that clinical 
guidance was "extremely valuable during the study as 
they were able to use the acquired skills in everyday 
activities outside of the iPad® too".
 Primary caregiver in the training was the mother, 
a premutation carrier who was also implementing the 
iPad® program with her daughter, a full mutation 5-year-
old girl, in the second active treatment period. Because 
the burden of active intervention maintained over 8 
months, the mother experienced high levels of stress, 
expressing the push to complete the study as it involved 
a great family and educational effort. However, parents 
reported the program contained extremely suitable 
applications and that clinical guidelines were useful 
and even went beyond the interactive iPad®-time itself. 
Figure 1 shows the results in the Parent's Satisfaction 
Survey (Likert Scale 0-5), in which higher scores 
relate to higher levels of satisfaction. Case 3 showed 
the highest scores (5) in Parent's Self-Confidence, 
Satisfaction to Clinical Guidance and Satisfaction to 
Program of Applications. 

3.4. Case 4 (FXS, girl 10 y)

3.4.1. Personal background

Case 4 is an almost 11-year-old girl who has the full 
mutation of FXS that was diagnosed in utero. Family 

pedigree reveals her great-grandfather died from fragile 
X-associated tremor ataxia syndrome (FXTAS). Her 
mother has FXS with normal intellectual abilities, but 
she took phenytoin during pregnancy due to a seizure 
disorder. Thus Case 4 is not only affected by FXS, but 
shows additional features of fetal hydantoin syndrome, 
as a second hit, identified by mild bowing of the upper 
lip in addition to the broad and low nasal bridge. 
Her early development included sitting at 8 months, 
crawling at 1 year, walking at 18 months, and delays 
in receptive and expressive language. Her behavior 
included hand flapping, finger biting and inconsistent 
eye contact. She had appropriate join attention and 
good social skills, although she had severe shyness, 
social anxiety and learning difficulties. She also 
underwent developmental testing in childhood with 
adaptive behavior problems and mild motor delay. 
She met criteria for selective mutism, anxiety disorder 
and borderline intellectual functioning prior to the 
beginning of our study.

3.4.2. MIND APPs study involvement, outcomes and 
challenges

When she joined the RCT she was 10 years 6 months 
old and parents already owned an iPad®, which was 
used mainly for entertainment. At that time she was 
receiving neither psychosocial nor medical treatment, 
but had an Individualized Educational Plan (IEP) at 
school (5th grade) where she used the computer for 
learning purposes. She could properly manage the 
iPad® and parents played with her by sharing games 
and educational applications. They had never received 
an iPad®-based training program and were highly 
motivated to be involved in the therapy. Case 4 fully 
completed the three timeline assessments. During 
the study she was not taking any medications apart 
from allergy pills and inhalant for asthma symptoms. 
We assessed autistic behavior as part of the baseline 
measures and she met criteria for moderate ASD (ADOS 
CSS 6). She had a low average cognitive level (IQ 80) 
and below average adaptive skills (VABS-II 70).
 Case 4 completed the 16-week iPad®-centered 
training together with her parents and they noted 
mild progress in academic learning and moderate 
improvement in expressive language and social 
comprehension. Her program followed educational apps 
with a particular emphasis in applications for enhancing 
literacy, expressive language and social skills, such 
as The Social Express®. She was followed locally so 
the family came to the MIND Institute clinic once a 
week and also tracked the online data through the Care 
Circles® platform application.
 Her mother needed to stop being the primary 
therapist in the pilot study due to overwhelming 
feelings of anxiety and a high level of stress. Case 4's 
father and grandmother needed to step in for the iPad®-
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based sessions at home one month before the end of the 
active period. 
 Figure 5 shows Case 4's PAL-II Reading and 
Writing Profile in which literacy tasks progress can be 
seen across the study timeline. The Receptive Coding 
task consisted of identifying single letters from a word. 
The patient presents maximum improvement in this 
task, and dramatically decreases the scores during 
the maintenance period. Alphabet Writing, in which 
the child is asked to print the alphabet in lowercase 
as quickly and accurately as possible presents a mild 
improvement, nevertheless a loss can be seen in 
the follow-up 2. Finally, Copying Task A, in which 
the child is asked to copy a sentence as quickly and 
accurately as possible shows a flat scoring across the 
3 time points. We believe this is due to the complexity 
of the assignment where the low-intensity iPad®-
based intervention cannot impact on complex literacy 
performance. Overall Figure 5 indicates that the active 
intervention was positively affecting learning in simple 
literacy tasks while during the maintenance period 
performance decreases, maybe caused by the lack of 
practice. 

4. Discussion

The search for touchscreen-based intervention 
procedures that are efficient, family and socially 
relevant and therapeutically viable is essential to the 
improvement of the services provided to children 
with FXS and their families. However, the present 
case series report is the first of its kind, and indicates 
that there is still a need for more controlled studies, 
with a larger number of participants, involving 
school setting and a multidisciplinary team, and more 
appropriate standardized tools to assess the outcomes of 
technology-based educational treatments.
 The great majority of existing literature reveals 
that touch-screen devices can be successfully utilized 
within educational programs targeting academic 
skills, communication, employment, and recreational 
activities for individuals with developmental and 
intellectual disabilities (3). Success relies on the use 
of well-established instructional procedures based 
on the principles of ABA, early intervention models, 
psychosocial approaches, or other specific models 
integrated in the community, as well as the school and 
in-home setting. Therefore, ownership of a tablet alone 
does not guarantee parental engagement in supporting 
their child for using this technology for learning (41) 
and that the presence of these mainstream devices does 
not automatically lead to a meaningful implementation 
for therapeutic interventions.
 The current case series explored an innovative 
psychoeducational intervention for children with 
FXS and their families to help them to acquire new 
skills regarding touchscreen technology and its use 

for learning purposes. By the end of the iPad®-based 
training parents reported having a better understanding 
and appreciation for assisting their child on managing 
the iPad® for interaction, communication and learning 
at home. Parents felt more confident in providing 
their child with educational guidelines and sharing 
social time together using technology as a learning 
tool. They also described weekly clinical interaction, 
both locally and on-line, as the most valuable 
resource for supporting their progress in the apps 
comprehension and behavioral strategies acquisition 
and administration. The telehealth modality was rated 
as effective as traditional one-on-one guidance sessions 
and parents attending the on-line training did not feel 
the need to see the therapist since clinical orientations 
followed the same structure, but based on a multimedia 
platform (video conference). Video conferencing with 
the therapist was highly important to understand how to 
apply the iPad®-based program in their family routine. 
However, the delivery of the intervention in a different 
format could affect the effectiveness of the treatment; 
so further research on a larger sample is needed out.
 The iPad®, as well as other touchscreen devices, 
have the capacity to be used with learners of different 
ability levels and ages if educational applications are 
selected appropriately, and subjects are given equal 
teaching opportunity to access this type of technology 
for communication and/or learning purposes. As we 
described before, even 2-year-old toddlers with FXS 
are not too young or low-functioning (review Case 
1) to start a comprehensive parent-delivered iPad® 
intervention at home. However, it is important to 
follow an age-appropriate structured program, based on 
available applications at the Apple Store, such as Injini® 
(Child Development Game Suite's) which provides 
excellent and engaging learning opportunities to young 
children with developmental delays. When parents are 
provided with behavior management techniques and a 
previous explanation of the app, they can perform high 
quality teaching sessions facilitating learning through a 
social and interactive parent-child exchange. 
 In addition to these caveats, it is difficult to 
quantitatively show improvement on standardized 
measures. Case 1 displayed a relevant improvement 
in his iPad® management and learning skills, such as 
fine motor abilities, audio-visual processing, matching, 
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Figure 5. Case 4 ♀- PAL-II Writing Profile.
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sorting and tracing but our outcome measures did not 
document significant gains after the 16-week active 
treatment period. Table 2 shows a summary of the 
principal outcomes of the participants in 6 clinical 
categories. 
 On the other hand, a more high-intensive intervention 
approach focused on a specific developmental skill may 
be more likely to show a significant improvement using 
more reliable objective data collection in an ongoing 
touchscreen-based therapy.
 Enjoyment when using the iPad® across the 16-week 
period was highly regarded according to parent report, 
and overall, this type of technology was perceived to 
have the potential to promote more engagement in the 
learning process at home.
 The interactive technology intervention was well 
accepted by the children and their parents. However, 
families also reported increased levels of stress at the 
end of the active treatment period. In the last weeks 
of the intervention training, some caregivers were 
exhausted by the iPad® tasks at home and they needed 
a reduction of the training rhythm and even a break 
from their educative duties. In Case 4 we described 
how the primary study iPad® caregiver, a mother with 
the full mutation and significant anxiety herself, needed 
to be exchanged with another family member because 
of the anxiety of performing the sustained interactive 
sessions at home in addition to other daily life routines. 
Clinicians must be sensitive to the parent's needs and 
careful about not to further increase the stress personal 
levels and family burden.
 In general, in the presented study from the 3 hours/
week of recommended usage by families, iPad® time 
was lowered to an average of 1.5 hours/week during 
a 4-month period which is minimal input for therapy 
purposes (See Table 1). We highly recommend longer 
treatment duration and intense periods facilitated by 

greater professional involvement and incorporation to 
school setting by educators so that the burden on the 
families remains manageable.
 We believe better standardized outcomes measures 
need to be designed since the ones implemented in 
the pilot study were not sensitive enough to quantify 
improvements over time, for example including video 
analysis tools for follow-ups could improve the progress 
tracking throughout treatment. Additionally, the study's 
design included a wide spectrum of applications 
targeting different skill domains with a low intensity 
and specificity in various areas proves to be difficult 
to measure improvement. We believe a more targeted 
approach to a particular domain and more intensive 
iPad® intervention duration will lead to more successful 
intervention results. Also, newer combinations of 
treatments will be needed, particularly those that tie 
this innovative intervention with pharmacological 
treatments and other educational and social approaches 
from a multidisciplinary point of view. 
 Optimal efficacy on a group level was not 
statistically documented in the preliminary analysis; 
nevertheless we can qualitatively describe a better 
performance in the 2 girls in the present report rather 
than for the boys, probably due to the higher IQ and 
expressive language levels in girls with FXS. Figure 
6 presents the 2 girls' and 2 boys' expressive language 
profile measured by EVT2 and PLS-EC, depending on 
the individuals' age, in which we can observe a clear 
higher trend in girls than in boys. In general, all the 
participants decrease scores during the maintenance 
period with no clinical guidance. The hyperactivity 
was much more severe in the boys than girls interfering 
with the behavior management and learning progress. 
A combination of ADHD medication with iPad®-based 
interventions should be considered in the future.
 Touchscreen tablets and educational application 
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Table 2. Principal clinical outcomes (Parent report)

Cases

Case 1♂
(2.9 y)

Case 2♀
(5 y)

Case 3♂
(6.9 y)

Case 4♀
(10.1 y)

Previous iPad®

 Knowledge/
Interactive use

Low/Low

High/Medium

Medium/Low

High/Medium

LANGUAGE 
GAINS

Vocabulary
acquisition 

Language
fluency

Increase of
utterances

in sentences

Expressive
language
fluency

*Applications

SOCIAL SKILLS
ACQUISITION

Turn taking and
waiting skills

Sharing the screen
and accepting others

while playing

Accept losing in 
cooperative games
(*apps) with adult

and siblings 

Communication
and social reciprocal

skills

ACADEMIC
LEARNING
PROGRESS

Fine motor skills
and early concepts

Tracing letters
and words

Motivation for
tracing letters and

initial reading stage

Tracing and written
expression improvement

BEHAVIORAL
OUTCOMES

Proper use of the
device for waiting

time periods 

Increase of self-
regulation towards

the interactive games

Acceptance of iPad®

time as a reward for
a particular amount

of time

Use of the iPad® as
a coping tool when she

is upset and anxious

PARENT
SATISFACTION

Very Satisfied

Moderately
Satisfied

Very satisfied

Very satisfied
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programs can be modified to fit particular needs and 
goals of each individual with neurodevelopmental 
disorders, particularly with FXS, and are designed 
to facilitate a more natural use of technology and 
diminish stigmatization. The emerging research and 
clinical experience described in these four cases offer 
a promising vision of the use of technology in children 
with FXS, particularly in a convenient in-home 
setting, and a deep understanding of how therapists 
can implement an individualized touchscreen-based 
program, and assist families in the best use of computer 
tablets for support and interaction.
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