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1. Introduction

Fragile X Syndrome (FXS) is the leading inherited 
cause of intellectual disability and autism. A hallmark 
feature of FXS is delay in receptive and expressive 
language development and this is often the presenting 
sign of FXS in early childhood (1,2). Symptoms 
of anxiety, attention deficit hyperactivity disorder 
(ADHD), and hyperarousal with sensory stimuli are all 
typical of children with FXS (3-8).
 FXS is a monogenic disorder caused by an 
expanded CGG repeat in the 5' untranslated region of 
the FMR1, located on the long arm of chromosome X 
(9). It is considered normal to have between 5-40 CGG 
repeats in FMR1. The premutation is characterized by 
55 to 200 CGG repeats and a full mutation occurs at 
> 200 CGG repeats (10). In the full mutation, FMR1 
becomes methylated, resulting in significantly reduced 
or absent levels of the FMR1 protein (FMRP). FMRP 
is a selective, inhibitory, mRNA-binding protein that 
regulates the translation of mRNAs into their respective 
proteins (11). It is expressed throughout the body, but 

is especially critical in neuronal soma and dendrites 
because most of the proteins that are regulated by 
FMRP are important for synaptic plasticity (12,13). 
Since FMRP expression depends on age, the lack 
of FMRP in FXS is particularly disruptive in early 
development, when synapse formation is especially 
dynamic (14). 
 As a result of the loss of FMRP expression, many 
neurochemical pathways are disrupted in patients with 
FXS (15,16). For example, there is up-regulation of the 
metabotropic glutamate receptor 5 (mGluR5) pathway 
leading to enhanced long term depression (LTD), down-
regulation of GABA pathways (17), and dysregulation 
of dopamine and cholinergic pathways (12,18). Here we 
discuss evidence that serotonin (5-hydroxytryptamine, 
5-HT) represents another potential target for mechanistic 
therapy. 

2. Serotonin in FXS mouse models

Findings in animal models of FXS provide evidence 
that serotonin can be specifically helpful in treating the 
dysregulated pathways in FXS. 
 One of the pathways known to be dysregulated in 
FXS is the mGluR-regulated LTD pathway (11,19,20). 
In the mGluR-mediated LTD mechanism, stimulation 
of postsynaptic group 1 (Gp1) mGluRs at a dendrite 
rapidly evokes local protein synthesis that results in the 
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internalization of AMPA receptors (AMPARs), such as 
GluA1 (GluR-A) from the synapse. Among the proteins 
synthesized upon stimulation at the dendrite is FMRP. 
FMRP is an mRNA translation repressor and serves as 
the negative feedback to the increased protein synthesis 
(20). Without FMRP, such as in FXS, evoked protein 
synthesis runs unchecked, leading to excessive AMPAR 
internalization and, thus, exaggerated LTD in response 
to a stimulus. Using hippocampal slices from the FXS 
mouse model, Costa et al. (21) showed that stimulation 
of postsynaptic 5-HT7 serotonin receptors successfully 
ameliorates the exaggerated mGluR5-mediated synaptic 
LTD in FXS to wild-type levels.
 GluA1-dependent long-term potentiation (LTP) is 
also disrupted in FXS (22), and can be partly corrected 
by serotonin. Lim et al. (23) showed this with an 
experiment measuring synaptic GluA1 delivery in 
hippocampal slice preparations from Fmr1 knockout 
(KO) and wild-type mice. Although GluA1 delivery to 
the synapse is normally impaired in the FXS model, 
application of a 5HT2B-R agonist restored about 20% of 
GluA1 synaptic delivery. 

3. Serotonin in patients with FXS and autism

There is limited research concerning serotonin levels in 
people with FXS. One study done by Hessl et al. (24) 
found that genetic polymorphisms in the gene encoding 
serotonin reuptake transporter protein correlated with 
levels of aggression in patients with FXS. Those 
individuals with polymorphisms conferring higher 
reuptake (a 44 base pair insertion in the promoter region 
at 17q11.2 of the 5-HTT receptor) correspond to a more 
aggressive FXS phenotype.
 Although there have been few studies specifically in 
the FXS population, significant research has been done 
in children with autism. This research is still highly 
relevant since there is significant overlap between 
autism and FXS (3,25). An analysis of de novo gene 
mutations resulting in autism showed that 30-50% of 
autism genes are regulated by or associated with FMRP 
(26). As previously mentioned, FXS is the leading 
monogenetic cause of autism. One third of patients with 
FXS are diagnosed with autism and another third meet 
criteria for autism spectrum disorder (ASD) (25,27). 
Children with FXS that did not meet ASD criteria still 
had autistic features such as poor eye contact, hand 
flapping or hand stereotypies, in addition to shyness or 
social anxiety (5,27).
 There is ample evidence that normal serotonin 
synthesis is disrupted in patients with autism. For 
example, it has been shown that metabolism of 
tryptophan, the amino acid precursor to serotonin, is 
decreased in patients with autism (28). Additionally, 
studies in which adults with autism were deprived 
of tryptophan found that this diet worsened autistic 
symptoms (29). Tryptophan metabolism occurs in 

mitochondria and follows one of two pathways, 
leading to either the creation of serotonin/melatonin or 
kynurenin-quinolinic acid. Both pathways also lead to 
nicotinamide adenine dinucleotide (NADH) production. 
In experiments done by Boccuto et al. (28), comparisons 
between lymphoblastoid cells from patients with 
autism and controls revealed a uniting abnormality in 
the cells from patients with autism: reduced ability to 
process tryptophan. The origin of autism in the study 
patients included both syndromal and non-syndromal 
cases. Subsequent genetic analysis revealed abnormally 
low levels of key enzymes involved in mitochondrial 
tryptophan metabolism (Figure 1). These proteins 
include SLCA5 and SLC7A8 (enzymes involved in 
tryptophan transport into mitochondria), WARS2 
(tryptophanyl tRNA synthetase), TPH2 (tryptophan 
hydroxylase 2, rate-limiting enzyme in the serotonin/
melatonin pathway inside mitochondria), as well as 
TDO2 (tryptophan 2,3-dioxygenase) and AADAT 
(aminoadipate aminotransferase), enzymes involved in 
the kynurenin-quinoloinic acid pathway. It is interesting 
to note that children with FXS often have sleeping 
difficulties (30), which may be related to dysfunction 
of melatonin due to ineffective tryptophan processing. 
Therefore, is not surprising that patients with FXS 
usually show improvements in their sleep patterns with 
melatonin treatment (31). 
 Children with ASD also have a significantly 
different capacity for serotonin production compared to 
children without ASD during development. Serotonin 
levels are normally relatively high in the developing 
brain compared to adults. This peak appears between 
ages 2-5 years, when brain serotonin synthesis capacity 
reaches twice the levels found in the adult brain (32). 
After age 5, synthesis ability declines until age 15, 
when it reaches adult levels. Children with autism, 
however, do not reach the same 2-5 year old peak. 
Instead, their serotonin levels increase slowly, resulting 
in a relatively low level during the 2-5 year old period 
and ending up at a higher level in adulthood (32). This 
suggests that therapeutic intervention with an SSRI may 
be more beneficial during this critical window in early 
childhood as opposed to later in life for children with 
autism, including those with FXS.
 Children with ASD also display abnormal cortical 
asymmetry in serotonin synthesis capacity (33). 
Notably, the specific pattern of asymmetry correlates 
with symptom presentation. For example, children with 
decreased left-sided serotonin synthesis have a higher 
rate of language impairment.

4. Serotonin and up-regulation of brain derived 
neurotropic factor (BDNF)

An intricate relationship seems to exist between 
serotonin and BDNF. Treatment with an SSRI can up-
regulate BDNF levels (34,35), and BDNF can also 
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 Though much attention is given to mature neurons, 
FMRP regulates proliferation and differentiation of 
adult neural stem/progenitor cells (51) and neurogenesis 
in early development (52). For example, FMRP is 
thought to play a crucial role in maintenance of radial 
glial cells (RGCs) in the neocortex during early 
development (53). Without FMRP, the RGC population 
is significantly reduced due to cell fate change from 
RGC to intermediate progenitor cell. In newborn 
neurons derived from neural progenitor cells lacking 
FMRP, basal levels of BDNF mRNA are increased 
(52,54). Levels of catalytic TrkB (tropomyosin-related 
kinase B), a receptor for BDNF, are also higher in the 
murine Fmr1 KO neural progenitor cells (54). This 
enhanced BDNF/TrkB signaling in FMRP-deficient 
progenitor cells likely contributes to the abnormal 
neural differentiation and migration patterns seen in the 
Fmr1 KO (43), such as the premature differentiation of 
neural progenitor cells which gives rise to neurons with 
small soma and short neurites (43). In addition, neural 
progenitor cells that lack FMRP also give rise to less 
glia (47). 
 However, the profile of BDNF expression appears 

stimulate serotonin synthesis (36). 
 BDNF is  a  cr i t ical  component  of  synaptic 
maturation, synaptic plasticity, and neurogenesis (37-
40). FXS can be classified as a disorder of the synapse 
(14,41,42). FMRP is highly expressed in neurons and 
plays an important role in dendritic plasticity (41,43-45). 
Without FMRP, dendrites do not develop normally. A 
hallmark morphological finding in patients with FXS is 
an abundance of immature dendritic spines (11,41,46-
48). Dendritic-dependent changes involved in long-term 
depression and potentiation are impaired, contributing 
to the cognitive deficits seen in these patients. Given 
the synaptic abnormalities seen in patients with FXS, 
BDNF has been a focus of many FXS-related studies. 
 Serum levels of BDNF mRNA and BDNF protein 
are overall lower in patients with autism (49) and serum 
BDNF mRNA levels may positively correlate with IQ 
in patients with ASD (49). A crucial experiment by 
Lauterborn et al. (44) showed that impaired LTP (long 
term potentiation) in the Fmr1-KO mouse model is 
rescued when hippocampal slices are bathed in BDNF. 
This experiment evidenced that BDNF is affected by 
the absence of FMRP (47,50).

Figure 1. Tryptophan pathways in patients with autism. The figure illustrates the main intracellular pathways involving 
tryptophan. The microarray dataset of Boccuto et al. 2013 (consisting of patients with autism) are in blue, genes with increased 
expression are in red. Genes with statistically significant reduction of expression in patients with autism are underlined. (Note: 
Figure reprinted and legend adapted from "Decreased tryptophan metabolism in patients with autism spectrum disorders" by 
Boccuto L, et al., 2013, Molecular autism, 4(1), page 7. Copyright 2013 by BioMed Central. Reprinted with permission.)
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to change significantly with age. In early mouse brain 
development, hippocampal expression of BDNF in 
the KO is still increased compared to WT (wild type) 
(54,55). However, by age 3-4 months, BDNF expression 
in the murine hippocampus is reduced compared to 
WT (52,55). Defects in hippocampal neurogenesis lead 
to cognitive deficits in the adult Fmr1 KO (56) and 
correlates with the hippocampal neurogenesis defects 
observed in individuals with FXS (57).
 Experiments performed by Uutela et al. (55) 
provide mixed evidence as to whether BDNF is 
beneficial in the FXS mouse model. When Fmr1 
KO mice were crossed with Bdnf+/- mice, the double 
transgenic mice showed roughly half of WT BDNF 
levels and deficits in water maze learning, contextual 
fear learning, and hippocampal neurogenesis. However, 
the double transgenic mice also showed improvements 
in locomotor activity, sensorimotor learning, and startle 
response in comparison to Fmr1 KO mice. Additionally, 
histological analysis of cultured neural progenitor cells 
showed that the double transgenic mice did not have 
the immature and abundant dendrites characteristically 
found in Fmr1 KO mice (55).
 These mixed findings may be partially explained 
by considering the changing profile of BDNF levels 
during different stages of development. The double 
transgenic mice had relatively lower BDNF levels 
during early development when BDNF may be 
detrimentally overactive due to absence of normal 
reciprocal regulation by FMRP. In contrast, BDNF 
levels in the double transgenics are low in adulthood 
when its presence could be beneficial, as evidenced by 
Lauterborn et al. (44). It is unclear when in childhood 
BDNF stimulation would be beneficial and whether this 
is a critical mechanism for improvement with sertraline 
treatment.

5. SSRI treatment in FXS

Effective targeted treatments for FXS are being 
researched with a focus on mechanism-based 
approaches (58,59). These include agents targeting 
mGluR5, GABAA, the endocannabinoid system, and 
other signaling pathways such as insulin growth factor 
(IGF), MAPK/Erk, and BDNF (12,18,19,60-63). 
Symptom-based treatments currently include stimulants, 
antidepressants (e.g. selective serotonin reuptake 
inhibitors; SSRIs), and atypical antipsychotics which 
are useful in treating symptoms such as hyperactivity, 
anxiety, and aggression (59,64). SSRIs are sometimes 
prescribed for patients with FXS to relieve symptoms 
of anxiety (59). Anxiety is a classic feature in FXS 
throughout life and particularly in childhood (4,5). 
Recent evidence shows that SSRI treatment may confer 
non-classical benefits to patients with FXS as well (65). 
A core symptom in this patient population is difficulty 
in language acquisition and communication (1). 

Individuals may have abnormal speech rate, stuttering 
or exaggerated repetition, and a limited vocabulary. 
Oftentimes, patients fixate on a particular topic, word, 
or phrase and perseverate on these phrases or topics. 
Treatment with an SSRI may additionally benefit 
communication abilities in patients with FXS.
 In  2011 ,  Winarn i  e t  a l .  (65 )  per formed a 
retrospective chart review of 45 children with FXS, 
aged 12-50 months. This analysis found that children 
with FXS who received the SSRI sertraline had 
significantly improved receptive and expressive 
language development compared to those not treated 
with sertraline. A subsequent controlled trial of 
sertraline in children with FXS ages 24 to 68 months 
is currently enrolling at the UC Davis MIND Institute 
(ClinicalTrials.gov identifier: NCT01474746) to assess 
the effects of sertraline in three general domains: early 
language/developmental abilities, sensory processing 
abilities, and symptoms relating to cognition, anxiety, 
and ASD.

6. Unique aspects of sertraline among the SSRIs

Clinical results and theoretical knowledge support 
the usefulness of SSRIs in treating patients with FXS 
(65). Sertraline may be relatively more effective than 
other SSRIs for this patient population. Sertraline has 
been approved by the Food and Drug Administration 
(FDA) as a treatment for OCD in children (age 6-17 
years old) and main side effects are worsening of mood 
and/or behavior, irritability, aggression and suicidal 
thoughts. Other side effects include drowsiness, fatigue, 
dizziness, and sleep problems. 

6.1. Dopamine reuptake inhibition 

There  i s  evidence  tha t  ser t ra l ine  has  unique 
neurochemical properties when compared to other 
SSRIs. Along with paroxetine, sertraline is considered 
one of the most potent inhibitors of serotonin reuptake 
(66). Additionally, sertraline significantly prevents 
dopamine reuptake (66). In a study done by Kitaichi 
et al. (67), researchers compared extracellular levels 
of serotonin, dopamine, and noradrenaline found in 
the prefrontal cortex, nucleus accumbens, and striatum 
of rats following administration of therapeutic doses 
of sertraline, fluvoxamine, or paroxetine. All agents 
successfully up-regulated serotonin in these areas, but 
sertraline was the only agent that also up-regulated 
dopamine, specifically in the nucleus accumbens and 
striatum.
 Dopamine dysregulation is implicated in many 
neuropsychiatric conditions (66). Irregularities in 
dopamine production and/or dopamine receptors are 
linked to disorders such as autism, schizophrenia, 
depression, ADHD, and substance abuse. Abnormally 
high or low levels of dopamine negatively impact 
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dendritic morphology (22,68,69). In a thorough review 
of the impact of dopamine on brain disorders and 
neurodevelopment, Money and Stanwood (68) state 
that examination of all the evidence points to dopamine 
playing "a crucial role…in formation and stabilization 
of synaptic connections in the striatum and frontal 
cortex".
 In vitro experiments done by Wang et al. (70) 
showed that dopamine receptor-mediated synaptic 
modulation is impaired in cells lacking FMRP. 
Normally, D1 stimulation leads to changes in AMPA 
receptor expression and phosphorylation necessary 
for LTP, both of which were significantly blunted in 
prefrontal cortical neurons derived from Fmr1 KO 
mice. This deficit was reversed when FMRP expression 
was induced in the cells via transfection. Furthermore, 
Wang et al. (70) showed that treating Fmr1-/- mice 
with a dopamine agonist specifically ameliorated the 
hyperactive behavior normally seen in these mice.
 Further evidence of the importance of dopamine in 
FXS comes from the study discussed earlier by Lim 
et al. (23) that showed treatment of FXS hippocampal 
preparations with serotonin partially ameliorated in 
vitro LTP deficits by 20%. The researchers actually 
experimented further to discover that a particular low 
dose combination of a 5HT2B-R agonist and D1 receptor 
agonist restored GluA1-mediated LTP in hippocampal 
slices to 100% (wild-type levels). This finding was 
subsequently tested in vivo, yielding impressive results. 
Fmr1 KO mice were treated with either 5HT, the 
dopamine agonist, or both. The mice then underwent 
an associative learning task. Though there was mild 
improvement in each of the monotherapy groups, only 
the FXS mice receiving the combined 5HT and D1 
cocktail were able to perform at WT levels, far superior 
to the abilities of their untreated FXS counterparts (23).

6.2. Neuroprotective effects

Taler et al. (35) analyzed in vitro cell (SHSY5Y 
human neuroblastoma cells) survival after 24 hours 
of antidepressant drug exposure including multiple 
SSRIs. Results showed that a low dose preparation 
(1-10 microgram) of sertraline or its derivative 
desmethylsertraline was the most beneficial SSRI in 
terms of cell survival. Compared to controls, sertraline 
improved cell survival rate by 50%. Paroxetine was 
the second most effective compound for cell survival, 
increasing viability by 40%. The rest of the drug 
candidates, which included fluoxetine, citalopram, 
reboxetine, venlafaxine, clomipramine, and mirtazapine 
showed no significant effects on cell survival. In a 
follow-up experiment, Taler et al. (35) compared the 
effects of sertraline on neuroblastoma cells exposed 
to stress (in the form of FCS-deprived media) vs. non-
stressed conditions. The results showed that sertraline 
and desmethylsertraline administration during stress 

conditions increase cell survival, suggesting that 
sertraline has a neuroprotective effect (Figure 2).
 In subsequent in-vivo experiments by Taler et al. 
(35), four to six week old wild-type mice treated with 
1mg/kg daily sertraline for 3 weeks showed improved 
performance on the Morris Water Maze (MWM) 
reacquisition phase. Older mice (12-14 months) 
performance on the reacquisition phase improved 
most when dosed at 10 mg/kg/day. Interestingly, 
no differences were observed in treated mice in the 
acquisition and extinction phases of the MWM. 
Compared to controls, sertraline-treated mice had 
increased BDNF expression in the hippocampus 
when dosed at 5 and 10 mg/kg/day. Additionally, 
phosphorylated ERK and Bcl-2 expression was up-
regulated in young mice receiving 5 mg/kg/day, though 
not in older mice at any of the measured dosages. It is 
noteworthy that the more beneficial results occurred in 
the younger mice, lending more support to the theory 
that early intervention with sertraline may be more 
beneficial.

7. Conclusion

Serotonin enhances synaptic modulation and refinement 
(71). There is evidence that during the peak of 
synaptogenesis in brain development (birth to 5 years 
of life), there is a reduction of serotonin synthesis 
(28,32). In mice and humans, SSRIs can upregulate 

Figure 2. Neurochemical effects of sertraline therapy 
in FXS. FMRP, BDNF, serotonin, and dopamine are all 
dysregulated in patients with FXS. Abnormal levels of FMRP 
and BDNF in FXS cause atypical dendritic morphology, 
LTD, LTP, and neurogenesis, all of which have been shown to 
normalize with serotonin application. Serotonin treatment may 
also directly benefit patients with FXS as an anxiolytic and by 
ameliorating defects in LTD, LTP and synaptic architecture. 
Sertraline may be an especially beneficial SSRI agent for FXS 
treatment because of its neurprotective effects and positive 
impact on language development. In addition, sertraline 
prevents reuptake of dopamine, another neurotransmitter 
thought to be dysregulated in FXS. Increasing dopamine 
levels in patients with FXS may help to improve hyperactivity 
and irregularities in LTP and dendritic morphology.
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neurogenesis in the hippocampus. Pertinent to FXS, 
serotonin levels are likely affected by the lack of FMRP 
(24,28,33). Furthermore, other proteins that can be 
influenced by serotonin deficiency, such as BDNF, may 
contribute to the neurobiological deficits observed in 
FXS (34-36). 
 SSRIs are considered a symptomatic treatment 
for patients with FXS, but they may be working in a 
targeted manner as well. We have discussed evidence 
here that increasing serotonergic signaling can 
potentially rescue the neurobiology that is disrupted in 
FXS by upregulating levels of BDNF, increasing the 
number of GluA1 receptors and GlutA1-LTP, increasing 
levels of serotonin in the synapse, and by enhancing the 
dopaminergic system. These mechanisms are thought 
to improve synaptic plasticity and brain development. 
Other effects may include balancing cortical asymmetry 
of serotonin and overall neuroprotective effects. 
 Among the SSRIs, sertraline may be especially 
beneficial to patients with FXS due to its potency 
and ability to block the reuptake of dopamine, a 
neurotransmitter known to be dysregulated in FXS 
(71) and other neuropsychiatric conditions (68). 
Experiments done on murine FXS models show 
that treatment benefits vary depending on age (14). 
Serotonin and BDNF profiles change over time, and 
may be pathologically low in early development. 
Therefore, the timing of therapy with serotonergic 
agents may be extremely important in patients with 
FXS. Similarly, the consequences of FMRP expression 
depend on age (14). This is consistent with evidence 
from a retrospective chart review done by Winarni et 
al. (65), which found that one to four year old children 
with FXS who received sertraline showed improved 
receptive and expressive language outcomes. It is 
critical that this therapeutic opportunity is further 
investigated with controlled trials, as it could lead to 
significant improvements in symptoms, cognition, and 
quality of life for patients with FXS.
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