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1. Introduction

Disorders of sex development (DSD) is a type of 
congenital disease with atypical chromosomes, gonads, 
or anatomical sex or abnormal development, with 
high heterogeneity in clinical manifestations and 
heredity, and a prevalence of about 1: 5500 - 1 :4500 
(1). Its incidence and rate of diagnosis are low, and 
multidisciplinary comprehensive evaluation is often 
required. Molecular genetic technology mediates in 
the diagnosis and has guiding significance for the early 
diagnosis of DSD. According to the consensus of the 
Chicago Conference in 2006, DSD are divided into 46, 
XX DSD, 46, XY DSD, and sex chromosome DSD 
(2). 46, XY DSD has a variety of causes and clinical 
manifestations, is difficult to diagnose clinically, and 
most patients require surgery.
	 However, the diagnosis of DSD is primarily 
d e t e r m i n e d  b y  a  c o m p r e h e n s i v e  e v a l u a t i o n 
encompassing a medical history, physical examination, 
laboratory analysis, genetic evaluation, and imaging 
studies, among other factors. The predominant advance 
during the preceding decade pertains to the evolution 
of genetic testing. In the event that patients undergo 
genetic testing, approximately one-third are found to 

possess mutant genes (Figure 1). For children with 
vague external genitalia or without secondary sexual 
development in adolescence, the evaluation and 
diagnosis should be completed with the cooperation of a 
multidisciplinary team (MDT), which should consist of 
pediatric endocrinology, pediatric (urological) surgery, 
obstetrics and gynecology, imaging, psychology, 
molecular genetics, or other related departments (3). At 
the same time, if the pathogenesis can be clarified, then 
it can be followed by precise treatment.

2. 46, XX DSD of adrenal origin

46, XX DSD is mainly related to SRY gene translocation, 
excessive factors related to promoting development 
and differentiation in the fetus and androgen excess, 
including 46, XX testicular DSD and congenital adrenal 
hyperplasia (CAH). In 46, XX cases, adrenal steroid 
production disorder is the cause of genital abnormalities, 
and patients may display an aldosterone deficiency, 
which may lead to life-threatening salt consumption 
crisis (4). Adrenal steroidogenic defects leading to 
46, XX DSD are a 21-hydroxylase deficiency, which 
is by far the most prevalent, and an 11β-hydroxylase 
deficiency.
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2.1. Pathogenesis of 46, XX DSD

2.1.1. 21- hydroxylase deficiency

The enzyme 21OH (P450c21) catalyzes the conversion 
of 17- hydroxyprogesterone to 11-deoxycortisol 
i n  t h e  f a s c i c u l a r  z o n e  a n d  p r o g e s t e r o n e  t o 
11-deoxycorticosterone (DOC) in the adrenal cortical 
zone. 21OHD (MIM 201910) caused by a CYP21A2 
(MIM 613815) mutation is the most common form, 
accounting for about 95% (5) of CAH. According to 
neonatal screening, the incidence of a 21- hydroxylase 
deficiency is estimated to be between 1/14 000 and 
18 000 live births (6). Life-threatening forms of salt 
consumption, accounting for about 75% of classical 
CAH, are usually due to gene deletion or transformation 
or a stop codon or frameshift mutation, which seriously 
affects the activity of 21OH, thus hampering the 
synthesis of glucocorticoid and mineralocorticoid. 
Although the genetic test for a CYP21A2 mutation is 
not a first-line diagnostic test at present, genotyping is 
the key to determining affected carriers in the family (7). 
At the same time, variants in more genes involved in 
glucocorticoid biosynthesis, such as STAR, CYP11A1, 
3β-HSD II, CYPB11B1, CYP17A1, and POR, have 
been identified as the cause of CAH (8).The p.A218V 
mutation in the acute regulatory gene (StAR) of steroid 
synthesis, which regulates ovarian steroid production 
and aldosterone and cortisol synthesis and secretion 
pathways, limits its binding activity to cholesterol and 
is a pathogenic variant (9). An increasing number of 
pathogenic variants are being found to be associated with 
46, XX DSD.

2.1.2. 11β-hydroxylase deficiency

M i c r o s o m a l  c y t o c h r o m e  P 4 5 0 c 1 1 β  w i t h 
11β-hydroxylase activity is coded as CYP11B1 (MIM 

610613), which catalyzes the last step of cortisol 
biosynthesis. Mutation of the CYP11B1 gene leads to 
11βOHD (MIM 202010), which is the second most 
common form of CAH, accounting for 0.2-8% of all 
cases. The prevalence of this disease is estimated to 
be 1 in 100,000, and the prevalence is higher among 
Muslims and Moroccan Jews in the Middle East (10). 
Compared to women with 21OHD, women with 
11βOHD are more masculine; interestingly, however, 
the degree of masculinity is not related to the degree 
of hyperandrogenism (11). The patient's fertility rate is 
low. Simm et al. reported the first successful pregnancy 
of a 26-year-old woman who was seriously deficient in 
11βOHD (12). The diagnosis of 11βOHD is based on 
an increase in the basal concentration of DOC and the 
high reactivity of 11-deoxycortisol (> 3 times the upper 
limit of the normal value) in an ACTH test. There is 
also low cortisol and normal or inhibited plasma renin 
activity (6). Diagnosis is difficult because neonates are 
usually free of hypertension and renin suppression, but 
molecular genetic testing can confirm the diagnosis 
of 11β OHD when CYP11B1 gene mutations are 
identified.
	 The advent of gene sequencing technologies, such 
as whole-exome sequencing (WES) and whole-genome 
sequencing (WGS), has precipitated a paradigm shift 
in the field of genetic analysis. These technologies are 
anticipated to facilitate the expeditious and precise 
identification of genetic mutations associated with 46, 
XX DSD, thereby enabling earlier diagnosis, particularly 
during the neonatal and even prenatal period. This will 
assist in the timely interventions required to mitigate 
the occurrence of severe complications, including 
salt depletion crises. The integration of multi-omics 
techniques (e.g. proteomics and metabolomics) may 
reveal a greater number of biomarkers associated with 
adrenal steroid synthesis disorders and provide a more 
comprehensive basis for diagnosis.

(184)

Figure 1. Karyotype and tissue flow of representative DSD pathogenic genes to Sankey diagram.
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of cases) (23). This DSD is characterized by bilateral 
ovular testes or a healthy ovary/testis and contra-
lateral ovular testis; the ovular testis may contain many 
primordial follicles. Excision of all inconsistent male 
testicles and Wolffian tissues can maximize the fertility 
potential of patients with ovular testicular DSD as 
women with complete Mullerian duct structure. At the 
same time, it helps to reduce the level of androgen and 
increase the chance of ovulation. Because of the high 
rate of premature delivery, neonatal death, or delivery 
problems reported (24), it should be closely monitored 
after pregnancy. In 46, XX gonadal dysgenesis (GD) 
cases, most successful pregnancies were the result of 
assisted reproductive technology (24,25). A 24-year-
old woman successfully became pregnant and delivered 
after receiving controlled ovarian stimulation and in 
vitro fertilization (26). However, these pregnancies 
are accompanied by obvious complications, including 
oligohydramnios, pregnancy-induced hypertension, 
preeclampsia, premature delivery, premature rupture of 
membranes, and spontaneous abortion (14).

2.2.3. Mullerian agenesis

The secondary sexual characteristics of patients with 
MRKH syndrome seem normal, but the lack of a vagina 
and uterus is the second most common cause of primary 
amenorrhea (27). Uterine transplantation is an innovative 
method in reproductive medicine that is used to treat 
infertility caused by an abnormal uterus. However, there 
are few reported cases of human uterine transplantation 
worldwide, and Brännström et al. reported the first live 
birth as a result of IVF after uterine transplantation (28). 
Correct and comprehensive diagnosis and psychological 
consultation are necessary to determine the best treatment 
for patients with Mullerian duct hypoplasia. (The effects 
of 46,XX DSD on fertility are shown in Table 1)

3. 46, XY DSD of adrenal origin

In 46, XY patients, DSD is caused by related testicular 
dysfunction, and the most common is primary adrenal 
insufficiency characterized by decreased cortisol 
secretion and excessive adrenocorticotropic hormone 
secretion. The nutritional function of ACTH causes 
CAH. The etiology and pathogenesis of 46, XY DSD 
are complex and diverse, and any factor that affects 
testicular differentiation or testosterone synthesis or 
action can lead to 46, XY DSD (29). There are many 
genes involved, and different pathogenic genes will 
cause different accompanying symptoms. The level 
of miRNA210 expression in 46, XY DSD patients is 
higher than in normal patients, which may be related 
to the development of cryptorchidism, confirming that 
RNA is one of the causative causes of 46, XY DSD 
(30). Abnormal gonadal differentiation and development 
have been found to be related to SRY, WT1, SF1, 

2.2. DSD and female reproductive capacity

In patients with DSD, fertility problems are caused by 
endocrine, gonad, or anatomical abnormalities inherent 
in the disease (5). In addition, medical and surgical 
treatment will affect the fertility of these patients. Age 
at diagnosis of DSD is another factor related to fertility 
(13). Because the fertility problem affects quality of 
life to a great extent, the fertility potential of patients 
with DSD needs to be considered in other medical 
management (14).

2.2.1. Excessive androgen

CAH leads to a higher adrenal androgen or progesterone 
level, interferes with gonadotropin secretion, and 
produces a series of pathophysiological consequences, 
leading to different degrees of chronic anovulation 
(15). Gender role reversal is relatively common among 
affected adult women. In addition, pre-adolescent girls 
with CAH may exhibit masculine and slightly feminine 
interests and preferences (16).
	 A wide range of pathophysiological symptoms and 
varying fertility rates were reported in 46,XX patients 
with DSD, with the most severe classic type of CAH, 21-
OHD, exhibiting the lowest pregnancy and success rates 
(15). In contrast, the pregnancy rate of patients with mild 
CAH is closer to the normal rate (17). One of the less 
common causes of CAH is a 17- hydroxylase deficiency 
(17-OHD), which occurs in less than 1% (18). This 
condition could be resulted from biallelic mutations in 
the CYP17A1 gene (19). Women with complete defects 
develop amenorrhea, sexual infantile syndrome, impaired 
secondary sexual development, and primary infertility, 
while some defects may manifest as female infertility in 
adulthood (20). Successful pregnancy has been reported 
with the help of in vitro fertilization cycle and frozen 
embryo transfer (21). However, there is no information 
about pregnancy in women with a 3β-hydroxysteroid 
dehydrogenase type II deficiency (3β-HSD II). 
Preimplantation genetic diagnosis (PGD) technology has 
been utilized to detect affected embryos prior to their 
transfer with assisted reproductive technology. Moreover, 
PGD necessitates the timely identification of pertinent 
CAH mutations in order to detect this autosomal 
recessive disorder. Women with CAH are vulnerable to 
age-related decline in oocyte quality and fertility, but 
few studies have reported that patients with CAH retain 
fertility (22).

2.2.2. Disorders of ovarian development

Normal ovarian tissue determines the final phenotype of 
external genitalia and internal genitalia. Ovotesticular 
DSD, also known as true hermaphroditism, is related to 
different karyotypes, including 46, XX (60% of cases), 
chimera 46, XX/XY (33% of cases) and 46, XY (7% 
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SOX9, DAX-1, DMRT1, and other genes(31). DAX1-/
Y mice displayed a female phenotype, and mating with 
DAX1/Y male mice produced singleton offspring, 
while DAX1-/Y mating with DAX1/female mice did 
not produce viable offspring (32). As shown in mice, a 
comprehensive evaluation of fertility following sexual 
reversal is imperative. A mutation in the DHX37 gene 
upregulates the β-catenin protein and activates the Wnt/
β-catenin pathway, which may be the cause of DSD (33). 
Mutations in CYP17A1, SRD5A2, and other genes can 
cause abnormal development of enzymes involved in 
androgen synthesis, thus leading to androgen synthesis 
disorder. Androgen dysfunction is mainly related to the 
androgen receptor (AR) gene. Compared to these single-
gene inheritance patterns, patients with Mastermind-
like domain-containing 1(MAMLD1) associated 46,XY 
DSD may carry variants in other DSD-related genes, and 
the phenotypic outcome of affected individuals might 
be determined by multiple genes. A study has indicated 
that male mice with deletion of the causative gene 
MAMLD of DSD have normal reproductive organs and 
reproductive capacity (34). Recent studies have further 
demonstrated that DSDs caused by MAMLD1 follow a 
pattern of oligogenic inheritance (35,36).

3.1. Pathogenesis

An astrocyte deficiency or a cytochrome P450scc 
and P450c17 deficiency can lead to CAH in 46, XY 
newborns. The mutation of SF1 may also lead to the 
combined failure of adrenal glands and testes, and the 
detection of DSD and NR5A1 mutations in 46, XY 
individuals can confirm the diagnosis (37). A 17,20-lyase 
deficiency (MIM 202110) is a rare cause of CAH, which 
is caused by any mutation of three different genes: 
CYP17A1, POR, or CYB5A (13). 46, XY patients 
with a 17,20-lyase deficiency had ambiguous genitalia 
at birth. 3β HSD 2 (38) or impaired POR activity (39) 
may lead to DSD in 46, XX and 46, XY individuals, 
which can be confirmed by detection of a gene mutation. 
The biological activity in the gonads is dependent on 
glycosylation of gonadotropins and their receptors. 
Glycosylation processes are essential for the correct 
gonad migration and genitalia morphogenesis. Conserved 
oligomeric Golgi complex 6-congenital disorder of 
glycosylation (COG6-CDG) is a type of metabolic 
disorder with abnormal protein glycosylation. A patient 
with COG exome deletion presents with a normal male 
karyotype, though the patient has an underdeveloped 
scrotum with no palpable testes and a micropenis (40). 
A study has found that COG6-CDG can manifest as sex 
differentiation disorder with chromosome karyotype 46, 
XY and external female genitalia (41). Other studies have 
indicated a relationship between COG6 impairment and 
DSD, glycoprotein metabolism, and sex development; 
however the mechanism of action is unclear. Some 
deleterious variants of the COG gene are associated with 
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46, XY DSD because of gonadal dysgenesis.

3.2. DSD and female reproductive capacity

3.2.1. Disorders of androgen-dependent target tissues

Androgen sensitivity syndrome (AIS) phenotypes 
range from the appearance of infertile men to women 
with typical external genitalia (42). The degree of 
insufficient masculinization of external genitalia at 
birth and adolescence depends on the level of androgen 
insensitivity in the target tissue. Because the risk 
of premature germ cell tumors is extremely low, it 
is reasonable to recommend that gonadectomy be 
postponed until adulthood (43). At present, patients with 
complete AIS (CAIS) are considered infertile because 
they have no ovaries or uterus. However, a study has 
detected germ cells in the abdominal gonads (42). The 
existence of germ cells improves the possibility of future 
fertility through preservation, but this option is only 
experimental at this stage.

3.2.2. Disorders of androgen synthesis or action

Patients with a 5α-reductase -2 (5α-RD-2) deficiency 
exhibit normal female genitalia with male internal 
ducts. After birth, under the influence of testosterone, 
somatic cells are masculinized. During sexual maturity, 
testosterone can also induce muscle enlargement, 
penis growth, and testicular decline (14). Li et al. 
demonstrated that an SRD5A2 mutation decreased the 
catalytic efficiency of the 5α-reductase type 2 enzyme 
and dihydrotestosterone (DHT) production (44). Similar 
to CAIS cases, the impaired function of 17β-HSD III 
can lead to clinical manifestations of female external 
genitalia before puberty(42). With the testes in place, 
masculinization occurs in adolescence, similar to what 
happens with a 5α-RD-2 deficiency(42).

3.2.3. Disorders of testicular development

46, XY gonadal dysplasia (GD) is caused by any gene 
mutation involved in gonadal formation. NR5A1, 
MAP3K1, and SRY are the genes often reported to 
be related to 46, XY GD . Complete 46, XY GD, 
also known as Swyer syndrome, is characterized by 
bilateral GD and physiologically effective uterine and 
normal endometrial reactions (45). These individuals 
have streak gonads, fallopian tubes, a small uterus, 
and female external genitalia. Striped gonads cannot 
produce normal amounts of sex hormones, so secondary 
sexual characteristics do not all develop. Although the 
gonads are poorly developed, a successful pregnancy 
can result from oocyte donation (45). However, there 
are very few live births among such patients (45). Taneja 
et al. reported that a patient with Swyer syndrome had 
a normal pregnancy and delivery as a result of donor 

oocytes (45). Winkler et al. reported a successful twin 
pregnancy in a patient with Swyer syndrome after oocyte 
donation and an in vitro fertilization cycle (46).
	 Partial 46, XY GD is an uncommon disease that 
is characterized by ambiguous genitalia and different 
degrees of testicular dysplasia, with or without a 
Mullerian duct structure. Hormone therapy includes 
administering estrogen and progesterone to individuals 
with a uterus to induce menstruation and administering 
estrogen to individuals without a uterus at the age of 10 
to avoid excessive bone maturation (47).A recent report 
described how MIRAGE syndrome caused by the sterile 
alpha motif domain-containing protein-9 (SAMD9) gene 
was responsible for an 46, XY sexual developmental 
disorder and adrenal insufficiency (48). MIRAGE 
syndrome is a multisystem and multiphenotypic genetic 
disorder. SAMD9 is expressed in a variety of tissues, and 
its role in the adrenal glands is often overlooked. SAMD9 
mutations can directly limit testicular development while 
affecting placental development and HCG levels (49). 
However, reports of female patients with karyotype 
46, XX are even rarer. (The effects of 46,XY DSD on 
fertility are shown in Table 2)

4. Sex chromosome in DSD

4.1. Turner syndrome

Partial or complete deletion of the X chromosome or 
a structural change in the sex chromosome will lead to 
a female phenotype, which is called Turner syndrome 
(TS). The complete deletion of the sex chromosome 
can be defined as 45, X/46, XX chimera or 45, XO. The 
infertility of women with X haploid TS is mainly due to 
premature ovarian failure (POF) with few or no oocytes 
(50). However, individuals with 45, X haploid or 45, 
X/46, XX chimera have normal puberty and regular 
menstruation, and have a natural pregnancy, giving birth 
to a healthy baby (51). TS cases experiencing natural 
pregnancy usually have mosaic genotype (50). Assisted 
reproductive technology has increased the probability 
of successful pregnancy of TS women using their own 
fresh or donor oocytes (52,53). In these cases, however, 
the risk of various complications increases, including 
pregnancy-induced hypertension, pre-eclampsia, 
gestational diabetes, premature delivery, multiple 
pregnancies, low birth weight, spontaneous abortion, 
inherent sex chromosome or endometrial abnormalities, 
and even death due to complications of aortic dissection 
or rupture (54). The uterus of TS women is smaller than 
a normal uterus, so single embryo transfer is performed 
(51).

4.2. Mixed gonadal dysgenesis

The main characteristic of mixed gonadal hypoplasia 
(MGD) is a 45, X/46, XY karyotype. The affected 
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individuals have streak ovaries and testes with ipsilateral 
dysplasia, which leads to structural abnormalities, such 
as a primitive Mullerian duct structure, incomplete Wolff 
duct development, and insufficient masculinization of 
external genitalia (55,56). Despite the lower natural 
fertility seen in MGD patients, some may be able to 
conceive through the use of assisted reproductive 
technologies, such as egg donation and in vitro 
fertilization (55).

4.3. Klinefelter syndrome (KS)

The karyotypes of KS are 47, XXY, 47, XXY/46, 
XY, 47, XXY/46, XX and 47, XXY/48, XXXY/49, 
XXXXY. The karyotype of patients is mainly 47, 
XXY, and the phenotype of patients with KS gradually 
deviates from normal due to the escape and inactivation 
of multiple genes on the redundant X chromosome. 
Some patients with KS have no obvious clinical 
manifestations themselves, and about 64% patients 
have never been diagnosed throughout their lives (57). 
KS accounts for 3-4% of patients with infertility and 
10-12% with azoospermia (58). In some patients, the 
clinical manifestations are being tall or having small 
testicles, a sparse beard, or an inconspicuous Adam's 
apple. There are also KS patients with psychological, 
behavioral, learning, and mental disorders, including 
impaired language ability. The specific mechanism is not 
clear, though it may be directly related to chromosomal 
abnormalities or may be caused by hypogonadism. 
Aksglaede et al. (59) reported that only 10% of patients 
were diagnosed before puberty. A study has shown 
that patients with KS have an increased risk of male 
breast cancer and extragonadal germ cell tumors (60). 
Therefore, early accurate diagnosis and close clinical 
monitoring of KS patients are crucial to preventing the 
development of tumors. (The effects of Sex chromosome 
DSD on fertility are shown in Table 3)

5. Conclusion

The diagnosis and treatment of DSD is very complicated, 
and individualized treatment is particularly important. At 
present, surgery is still the main treatment, and gender 
psychological determination and gender distribution are 
the most critical links in the treatment of patients with 
46, XY DSD. The opinions of multidisciplinary teams, 
family members, and/or children themselves should be 
integrated, along with factors such as the patient's sexual 
psychology, sexual role, and sexual orientation, the risk 
of gonadal cancer, fertility potential, follow-up treatment, 
and the social and cultural environment so as to avoid a 
change in gender in adulthood.
	 In addition, other treatments mainly include correct 
identification of gender and upbringing, hormone 
replacement therapy, and preservation of fertility. The 
improper identification of DSD and gender can lead 
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to an inconsistency between the patient's physical and 
psychological gender, resulting in profound mental stress 
and psychological obstacles, so attention should be paid 
to social and psychological support for and long-term 
follow-up of patients.
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