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Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is 
caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about 
the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, 
and particularly to the evaluation of new treatments. Variations in the prevalence and penetrance of 
AIP in various studies may due to the different inclusion criteria and methods of assessment. Here, 
the prevalence and penetrance of AIP are analyzed systematically, and the genetic traits of different 
populations and findings regarding the genotype-phenotype correlation are summarized. In addition, 
quite a few studies have indicated that AIP susceptibility was affected by other factors, such as 
modifying genes. Findings regarding possible modifying genes are documented here, helping to reveal 
the pathogenesis of and treatments for AIP. The status of research on AIP in China reveals the lack of 
epidemiological and genetic studies of the Chinese population, a situation that needs to be promptly 
remedied.

1. Introduction

Porphyrias are a group of metabolic diseases that result 
from a specific abnormality in one of the eight enzymes 
of the heme biosynthetic pathway (1,2). In general, 
porphyrias are classified either as acute porphyrias or 
cutaneous porphyrias based on their clinical presentation 
or as hepatic and erythropoietic porphyrias based on the 
tissue where heme precursors are overproduced (3).
 Acute intermittent porphyria (AIP, OMIM#176000), 
the most common and severe form of acute hepatic 
porphyrias (4), is an inherited metabolic disease that 
exhibits an autosomal dominant pattern of inheritance 
caused by partial deficiencies in hydroxymethylbilane 
synthase (HMBS; EC 2.5.1.61), the third enzyme in 
heme biosynthesis (5). AIP has significant molecular 
genetic heterogeneity and low penetrance (6). It leads to 
accumulation of upstream metabolites δ-aminolevulinic 
acid (ALA) and porphobilinogen (PBG), which induce 
toxicity to the neurologic system, and then trigger 
episodic, acute neurovisceral symptoms that can even 
be life-threatening (7-11). Studies of the prevalence, 
penetrance, and molecular genetic traits of AIP are 
crucial to its early diagnosis and rational management. 
Thanks to the rapid development of next-generation 

sequencing (NGS) technology, genetic sequencing has 
been widely used to detect HMBS gene mutations (12,13). 
Some studies based on genetic testing have revealed 
that the prevalence of HMBS variants was substantially 
underestimated, with extremely low penetrance in the 
general population but higher penetrance in families with 
AIP (14,15).
 Findings regarding modifying genes and the 
correlation between genotype-phenotype warrant more 
attention in recent studies on AIP. Although a genotype-
phenotype correlation has not been identified, certain 
mutations may be relevant to penetrance or the severity 
of clinical manifestations. Some modifying  genes that 
have been identified in recent years are reviewed here, 
including the PEPT2 gene, PPARA gene, cytochrome 
P450 gene, and ABCB6 gene.
 In China, concern about AIP has increased, but most 
studies on AIP are various case reports and small series. 
The prevalence, penetrance, and genetic traits of Chinese 
patients with AIP are still unclear and need to be fully 
evaluated.

2. Prevalence and penetrance of AIP

AIP is an autosomal dominant metabolic disorder with 
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a variable prevalence among different countries (16). 
Because it is a rare disease with multiple phenotypes, 
its prevalence is difficult to evaluate (17). Therefore, 
information about the prevalence of AIP is most often 
based on estimates. Variations in the prevalence and 
penetrance of AIP in various studies are probably 
due to different inclusion criteria and methods of 
assessment (18). Information is classified in Table 1 
as the prevalence of symptomatic AIP, the prevalence 
of pathogenetic HMBS mutations (including data on 
the general population and families with AIP), and 
penetrance (including data on the general population 
and families with AIP).
 Much of the information on AIP comes from a 3-year 
prospective study of newly diagnosed symptomatic 
patients with AIP in 11 European countries, and the 
annual incidence of symptomatic AIP was reported to be 
0.13 per million. Its prevalence, which was calculated 
based on the incidence and mean disease duration, 
was 5.9 per million in Europe (19). Moreover, the 
numbers were similar in all countries except Sweden 
(19). The rate of recurrence, which was 3-5%, was also 
been estimated in that study. In addition, the sliding 
prevalence of symptomatic AIP indicates the importance 
of improved management and educational strategies (19-
22). Similarly, a 60-year retrospective study in Finland 
revealed a decrease in patients with active AIP (23,24). 
In light of the number of patients with AIP referred 
to a French facility, the prevalence of overt AIP was 

estimated to be 7.6 per million, which was in line with 
the aforementioned figure of 5.9 per million (25).
 Due to founder effects, the prevalence of AIP was 
markedly higher in some regions, such as 17.7 per 
million in southeastern Spain (26) and 23 per million in 
Sweden (19). In northern Sweden, it was even 192 per 
million (27). Information from Argentina and Western 
Australia may less credible because no gene sequencing 
was performed (28,29).
 Although symptomatic patients with AIP are quite 
rare, some findings based on population have indicated 
that the prevalence of pathogenic HMBS mutations was 
higher than previously estimated. A study based on 
Caucasians indicated that the prevalence of pathogenic 
HMBS mutations was 1/1,782 (14). This result was 
consistent with the findings of two studies in France, 
which estimated the prevalence of mutations in the 
HMBS gene to be 1/1,675 to 1/1,299 (15,25).
 Thus, this information indicates a marked discrepancy 
in the estimated prevalence of HMBS mutations and 
the occurrence of acute attacks in patients with AIP, 
which means that its penetrance is very low. As of the 
current point in time, penetrance is estimated to be 
approximately 20-50% in families with AIP but only 
~1% in the general population, with the exception of 
23% in the Swedish and 42% in the Northern Swedish 
(14,19,25,27,31,32). This finding strongly suggests that 
other factors act as a catalyst for AIP attacks, such as 
modifying genes and environmental factors.

197

Table 1. The estimated prevalence and penetrance of AIP

Country (region) or 
Population

Caucasian
Europe
France

Sweden

Northern Sweden

Switzerland

Southeastern Spain
Spain
Finland

Norway
Northern Italy
Poland
UK
Netherlands
Russia
Argentina*

Western Australia*

Prevalence of 
symptomatic AIP 
(case per million 

inhabitants)

5.9
7.6

5.5
23

192
10-15

9.9
17.7
6.3

5.9
6.3
5.0
7.2
7.2
8.1

8
24

Ref.

14
19
25
15
19
19
30
30
27
31
19
26
19
32
19
19
19
19
19
19
58
28
29

*No gene sequencing was performed in the study

in the general 
population

1/1,782

1/1,299
1/1,675

  1/10,000
1/1,000
1/2,000

in families 
with AIP (%)

50

47

59

Prevalence of pathogenetic
HMBS mutations

in the general
population

< 1

0.5-1

23

42

in families 
with AIP

22.9

52

52
35

57
40
29

Penetrance (%)
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all studies have found that acute attacks affect females 
much more frequently than males (19,54,59,60,62-
64). A recent study in Finland found a high penetrance 
of 41% for AIP acute attacks and 50% for all acute 
manifestations associated with AIP in female patients 
(32). Similar findings have been gleaned from families 
with the founder mutation p.W198X in northern 
Sweden (27,65). These studies emphasize that female 
hormones trigger AIP attacks (23,66,67).

3.3. Genotype-phenotype correlation

To date, no clear genotype-phenotype correlation for AIP 
has been determined (24,63,68). However, some studies 
have indicated that some mutations may be related 
to a higher penetrance and/or more severe clinical 
manifestations, such as p.W198X, c.1073delA, and 
p.R26C (32,69), while some variants may be associated 
with a lower penetrance and/or milder manifestations, 
including p.R167W, p.R225G, and c.G33T(24,32,69). 
Interestingly, conflicting findings were obtained from 
studies on P.R173W; a study in Finland reported a lower 
penetrance but studies in Northern Sweden and Spain 
reported a higher penetrance (16,32,69). Although a 
study in Finland found similar genotypes, penetrance 
differed greatly among families (32). This shows that 
the phenotype of AIP is not determined by the HMBS 
genotype alone but that other factors such as modifying 
genes and the environment also play a vital role in 
the pathogenesis of AIP attacks (6,24,25,32,70,71). 
Moreover, protein function analysis and bioinformatic 
tools have been used to identify a genotype-phenotype 
correlation. Some mutations in the HMBS gene including 
p.R116W, p.R173W, p.R149X, p.Q217H, p.G218R, 
p.A219P, and p.A330P have been predicted to lead to 
severe clinical manifestations (72). The correlation 
between genotype and phenotype is still a topic of 
interest in research on AIP.

3.4. Modifying genes

The low penetrance of AIP and the significant difference 
between the penetrance found in families with AIP and 
that found in the general population indicate that AIP 
susceptibility is affected by the inheritance of HMBS 
gene mutation as well as other genetic or environmental 
factors. A hypothesis has been put forth that AIP 

3. Genetics of AIP

3.1. Molecular bases

Genetically, AIP is an autosomal dominant disorder 
resulting from mutations in the HMBS gene (33), which 
is located at the chromosomal region 11q24.1-24.2 
(GRCh38.p11:119,084,003-119,094,417). There are two 
isoforms of HMBS, the housekeeping and the erythroid 
isoforms (34). The transcript including exons 1 and 3-15 
is directed by housekeeping promoter located in the 5' 
flanking region upstream of exon 1, and the transcript 
containing exons 2-15 is produced by an erythroid-
specific promoter located in a region 3 kb downstream of 
intron 1 (35-37). Most patients with AIP carry mutations 
in exons 3-15, which affect not only the housekeeping 
but also the erythroid isoforms of HMBS, which are 
the classic form of AIP. When mutations occur within 
or close to the coding region of exon 1, the activity of 
HMBS in erythroid cells is normal (38-40). Regulatory 
gene defects in the 5' -promoter regions of the HMBS 
gene have been found in patients with AIP (41). To date, 
no variants have been found in the erythroid-specific 
promoter or in exon 2 (42).

3.2. Molecular genetic features

Thus far, over 500 different mutations in the HMBS gene 
have been identified (Human Gene Mutation Database 
HGMD, http://www.hgmd.cf.ac.uk/ac/index.php). There 
are 31 CpG dinucleotides, at which most of the de 
novo events in human genes appear, in the 1,086 base-
pair coding sequence of HMBS (14,43). Because of 
oxidative deamination of methylated cytosines, the CpG 
dinucleotides are believed to be hypermutable (44). Most 
of the mutations resulting in AIP are private or present 
only in a few unrelated families, a fact that highlights 
the molecular genetic heterogeneity of AIP (45-53,73). 
Nevertheless, a few mutations are relatively common 
either due to CpG dinucleotide mutational hotspots in 
the gene (43), such as the mutations encoding p.R173W 
and p.R167Q, or due to a founder effect, such as HMBS 
P.G111R in Argentina and p.W198X in Sweden (54,55). 
(Table 2 shows the founder effect mutations causing AIP 
among different populations).
 Since AIP is an autosomal dominant disease, no sex 
differences in gene carriers are expected (60,61), but 

Table 2. Founder effect mutations causing AIP among different populations

Population

Dutch
Canadian (Nova Scotia)
Swedish
Swiss (German-speaking)
Argentinean
Spanish (Murcia, southeastern region of Spain)
Russian

Mutation (cDNA)

      c.346C > T
      c.517C > T
      c.593G > A
      c.848G > A
      c.331G > A
      c.669_698del
      c.53delT

Ref.

51
56
55
31
54
57
58

Mutation (Amino Acid)

            P.R116W
            P.R173W
            P.W198X
            P.W283X
            P.G111R

            p.Met18ArgfsX3

Exon

8
10
10
14
7
12
3
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inheritance does not follow the classical autosomal 
dominant pattern but an oligogenic or polygenic 
inheritance pattern with environmental modifiers 
(25,58,74,75).
 Many attempts using various approaches have been 
made to search for those modifying genes in order to 
both further understand the pathogenesis of AIP and to 
identify reliable therapeutic targets.

3.4.1. PEPT2 gene

Genetic variation in human peptide transporter 2 
(PEPT2, also known as SLC15A2) has been identified 
as an aspect in modulating the severity of renal and 
neurologic impairment (6,76-78). ALA is reabsorbed 
in the proximal tubules by PEPT2 variants. Variants of 
PEPT2 have different affinities for ALA: PEPT2*1 has 
a higher affinity for ALA while PEPT2*2 has a lower 
affinity (79,80). Thus, more significant neurotoxicity 
may occur in PEPT2*2 carriers because they have 
lower ALA brain efflux (81-83). That said, PEPT2 *1 
with a higher affinity for ALA is associated with an 
increased risk of renal disease (6,76).

3.4.2. Cytochrome P450 gene

The enzyme 5-aminolevulinic acid synthase (ALAS) 
1 catalyzes the rate-limiting step in the production of 
heme and is regulated by heme through a negative 
feedback loop (84). Many of the substances that induce 
cytochromes (CYPs) in the endoplasmic reticulum of 
the liver can also result in increased hepatic ALAS1 
activity (85,86).
 Studies have indicated that the hepatic cytochrome 
P450 gene may play a role in AIP attacks (87). A 
study found that Cyp2c40, Cyp2c68, and Cyp2c69 
were upregulated in mice with induced AIP but 
downregulated in wild-type mice. These genes are 
respectively equivalent to CYP2C8, CYP2C9, and 
CYP2C19, which are the primary human CYP450 
enzymes involved in drug metabolism. Cyp21a1, the 
homolog of human CYP21A2 or CYP17A1 (-37), is 
a crucial enzyme in corticosteroid and sex hormone 
synthesis; Cyp21a1 is downregulated in mice with 
induced AIP but upregulated in wild-type mice (88,89). 
A study based on the population in the Spanish region of 
Murcia revealed parallel findings: the alleles CYP2D6*4 
and *5 may prevent acute attacks in patients with AIP 
while CYP2D6 may constitute a penetrance-modifying 
gene (26).
 In short, the cytochrome P450 gene may be related to 
the pathogenesis of AIP, but further studies are needed to 
confirm this hypothesis.

3.4.3. PPARA gene

Peroxisome proliferator-activated receptor alpha 

(PPARα) is a transcription factor belonging to the 
nuclear receptor superfamily, and ALAS1 has been 
identified as a target (90). In general, nuclear receptors 
regulate transcription through interactions with 
coactivator or corepressor molecules (91-95). Binding 
of agonists to PPARα leads to an enhanced binding of 
co-activator proteins, such as the proliferator-activated 
receptor γ coactivator 1α (PGC- 1α) (96,97). PGC-
1α, which acts as a bridge from the activated PPARs to 
the basal transcriptional machinery (90), activates the 
ALAS1 promoter by coactivating the nuclear respiratory 
factor-1 (NRF-1) and the forkhead box O1(FOXO1), 
both of which directly bind to the ALAS1 promoter (98).
 Recently, a study based on protein functional 
analysis indicated that the PPARA gene has obvious 
functional overlap with ALAS1 (72). That study also 
indicated that transcription of CYP2C8 and CYP3A4 
is directly regulated by the PPARA gene (99), which 
is similar to previous findings that genes in CYP 
classes 1-3 are specifically regulated by PPARA in 
humans (100-103). Thus, mutations in PPARA may 
affect the heme biosynthesis pathway by regulating the 
cytochrome P450 system and eventually lead to AIP 
attacks (104).

3.4.4. Some genes regulating the nervous system

Currently, a few defects in genes regulating the nervous 
system (UNC13A, ALG8, FBXO38, AGRN, DOK7, 
and SCN4A) have been detected in a study in Russia 
(58). The latter three genes are related to congenital 
myasthenic syndrome (CMS), whose symptoms bear 
a remarkable resemblance to neurologic features of 
AIP attacks. Thus, the combination of a mutation in 
the HMBS gene with defects in genes regulating the 
nervous system may play a key role in triggering acute 
AIP attacks and prompting the development of specific 
symptomatic traits (58). However, this assumption 
needs to be verified in future studies.

3.4.5. ABCB6 gene

Elevated porphyrins are a hallmark of various types of 
porphyria. ABCB6, a type of porphyrin transporter, has 
been investigated as a modulator of porphyria severity 
through deep sequencing and biochemical analysis. 
A study found that patients with severe porphyria 
have variant alleles in the ABCB6 gene (105). Plasma 
membrane ABCB6 exports multiple disease-related 
porphyrins. Functional studies have revealed that most 
of these ABCB6 variants are poorly expressed and 
also dysfunctional. Therefore, ABCB6 is presumably a 
genetic modifier of porphyria that alleviates its severity 
by expelling porphyrins.
 Nevertheless, most reports of modifying genes are 
only preliminary findings, and further clinical studies 
are needed to verify their reliability.
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4. Status of research on AIP in China

For a long time, China' s healthcare system has paid 
less attention to rare diseases, including AIP (106,107). 
An early study in the Mainland found a high rate of AIP 
misdiagnosis (33). Over a decade ago, a study involving 
24 unrelated Chinese patients with AIP in Taiwan found 
no genotype/phenotype correlations, but the spectrum 
of HMBS gene mutations detected in these patients with 
AIP coincided with those observed in patients of other 
ethnic origins (61).
 In recent years, this rare disorder has garnered 
attention from Chinese physicians, and small series of 
and case reports on AIP, and especially reports of novel 
mutations, have increased in China, indicating that AIP 
may not be as "rare" as was previously assumed (108-
114). In addition, some studies have analyzed clinical 
features of Chinese patients with AIP, such as posterior 
reversible encephalopathy syndrome (110,115-118). 
Peking Union Medical College Hospital first described 
how acute attacks affected the quality of life and 
psychological state of patients with AIP in Northern 
China (119).
 Unfortunately, there are as of yet no studies on the 
prevalence, penetrance, and genetic traits of Chinese 
patients with AIP. Findings from Western counties are 
most likely inapplicable to the Chinese population due 
to the obvious differences in ethnic characteristics. 
Therefore, data on Chinese patients need to be 
evaluated in order to promptly identifying patients with 
HMBS mutations that have not yet suffered attacks, to 
properly manage patients, and to improve prognosis.

5. Conclusion

AIP is an inherited metabolic disease that exhibits 
an autosomal dominant pattern of inheritance caused 
by partial deficiencies in HMBS. In Europe, the 
estimated prevalence of AIP was 5.9 cases per million 
population, while the prevalence of HMBS variants 
was 1/1,299~1/1,782, with penetrance estimated at 
20-50% in families with AIP but only ~1% in the 
general population. AIP has marked molecular genetic 
heterogeneity. No clear correlation between genotype 
and phenotype has been confirmed for AIP, although 
studies have reported that some mutations may be 
relevant to its penetrance or the severity of clinical 
manifestations. Consequently, the prevailing view is 
that other factors, such as modifying genes, may play 
an essential role in AIP attacks. Studies have identified 
some likely modifying genes, but most of those studies 
are just initial studies based on trials or predictions. 
Further clinical studies are needed to verify their 
reliability. Recently, studies on AIP have increased 
in China, but the prevalence, penetrance, and genetic 
traits of AIP in Chinese patients are unclear. Studies are 
urgently needed to reveal those aspects.
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