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Matching is a common method of adjusting for confounding in observational studies. Studies in 
rare diseases usually include small numbers of exposed subjects, but the performance of matching 
methods in such cases has not been evaluated thoroughly. In this study, we compare the performance 
of several matching methods when number of exposed subjects is small. We used Monte Carlo 
simulations to compare the following methods: Propensity score matching (PSM) with greedy or 
optimal algorithm, Mahalanobis distance matching, and mixture of PSM and exact matching. We 
performed the comparisons in datasets with six continuous and six binary variables, with varying 
effect size on group assignment and outcome. In each case, there were 1,500 unexposed subjects and 
a varying number of exposed: N = 25, 50, 100, 150, 200, 250, or 300. The probability of outcome 
in unexposed subjects was set to 5% (rare), 20% (common), or 50% (frequent). We compared the 
methods based on the bias of estimate of risk difference, coverage of 95% confidence intervals for 
risk difference, and balance of covariates. We observed a difference in performance of matching 
methods in very small samples (N = 25-50) and in moderately small samples (N = 100-300). Our 
study showed that PSM performs better than other matching methods when number of exposed 
subjects is small, but the matching algorithm and the matching ratio should be considered carefully. 
We recommend using PSM with optimal algorithm and one-to-five matching ratio in very small 
samples, and PSM matching with any algorithm and one-to-one matching in moderately small 
samples.

1. Introduction

The generation of an appropriate comparator group is 
a challenge for many studies related to epidemiology, 
health care,  benefit  assessment,  and the cost-
effectiveness of treatments. The potential exists to 
establish a comparator group from either secondary 
data, historical groups or meta analyses. The number of 
studies using propensity score matching (PSM) for this 
purpose is increasing, with the number of publications 
using these methods increasing from 432 in 2010 to 
3,335 in 2018 (1).
 Studies of rare diseases often include comparisons 
between two or more groups, at least one of which 
has a small sample size. Such comparisons are subject 
to confounding and the consequent biases that are 
generated. Confounding is present when subjects' 
characteristics, both observed and unobserved, are 
not randomly imbalanced between two comparison 

groups (2). In randomized controlled trials, the balance 
(or imbalance due only to chance) of characteristics 
is usually achieved in the study design stage, when 
the two groups are randomized before treatment 
assignment. In observational studies, it is impossible 
to achieve this balance before the group assignment, 
and accounting for it in the analysis stage is therefore 
necessary.
 Confounding in comparison analyses can be 
reduced in a number of ways, such as by regression 
adjustment, stratification, or matching (3) or by a 
combination of two methods (4). Regression adjustment 
is a common method, which adjusts for confounding 
by directly including the confounding covariates in 
the regression model. Another method of confounding 
adjustment involves stratifying the observations into 
groups based on the fixed values of a confounder, so 
that the values of the confounder do not vary within 
each group. The analyses are performed separately in 
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each of the stratified groups, and the results are then 
combined. Lastly, adjusting for confounding in large 
observational studies can be achieved by matching, 
where similar exposed and unexposed subjects are 
matched, and the analysis is performed on the matched 
exposed and unexposed subjects only. One common 
method for matching the observations is PSM (2). 
In this method, exposed and unexposed subjects are 
matched on a similar propensity score, which is the 
probability of being exposed given the values of other 
covariates. As with all the methods for adjusting for 
confounding, PSM is based only on a subject's observed 
characteristics. That is, PSM can only adjust for 
characteristics included in the propensity score model, 
and it is sensitive to how the propensity score model is 
specified.
 Various aspects of PSM have been studied in the 
past; however, most of the studies on and using the 
method have involved datasets with large samples (5,6). 
Studies have also been conducted to gain more specific 
details about matching, such as the advantages of one-
to-many matching in PSM (7) or the ideal caliper 
widths in PSM (8). However, to our knowledge, the 
performance of PSM in small samples has only been 
scarcely studied (6,9,10). A recent study by Cottone 
(11) explored the advantages of combining propensity 
score methods (matching, stratification, and weighting) 
with regression adjustment. Austin (12) performed one 
of the most detailed studies on propensity-score-based 
matching in small samples, in which several propensity-
score-based matching methods were compared to 
one another. None of the previous studies, however, 
including the studies by Cottone (11) and Austin (12), 
has compared the performance of PSM methods in 
small samples to matching methods that are not based 
on propensity scores, and no study has assessed the 
performance of matching methods across different 
outcome rates. In addition, no studies have been carried 
out with small samples examining the sensitivity of 
various matching models to unobserved confounding.
 Statistical methods have been developed to provide 
unbiased results under certain assumptions, such as 
appropriate variable distribution or adequate sample 
size (13). Those assumptions are especially likely to 
be violated in studies with small sample sizes, and 
the methods used in such studies should be carefully 

considered (14-17). Matching observations from small 
samples can pose some unique problems that might not 
exist in matching larger datasets. First, because of the 
small sample size, building a propensity score model 
that takes into account all the relevant variables might 
be difficult. Furthermore, if a propensity score model 
is not specified correctly or does not include all the 
variables associated with the outcome, then the bias in 
the results might not be lessened using PSM. Second, 
there has recently been a discussion about whether 
PSM increases or decreases the balance in matching 
variables (18,19), but the balance in these variables has 
not been studied in small samples. Since PSM does not 
balance the sample on individual variables, but on an 
overall score, it is possible that in small samples, the 
overall balance of the samples will not be achieved. 
Finally, in small samples, the outcome rate should 
possibly influence the analysis method that is used. 
Outcomes with low rates of occurrence can result in a 
small number of outcomes observed, thus making the 
analysis highly sensitive to analysis methods.
 In this study, we evaluate the performance of PSM 
when the number of exposed subjects is small, and we 
compare it to performance of matching methods that 
are not based on propensity scores or not based only on 
propensity scores. We examine the performance of each 
of the methods in several different scenarios in terms of 
sample size and outcome rate. Lastly, we examine the 
effect that unobserved confounding has on the results 
from each matching method.

2. Materials and Methods

We used a series of Monte Carlo simulations (20) to 
compare the performance of different matching methods 
when the number of exposed subjects is small. Each 
simulated dataset included one binary outcome and 
12 covariates, 6 of which were continuous and 6 of 
which were binary. We evaluated the performance 
of seven matching methods, which are described in 
Table 1. Briefly, four of the matching methods were 
based on propensity score distance, with two of them 
using greedy and two of them using optimal matching 
algorithms. Two of the methods were based on the 
Mahalanobis distance. The last method was based 
on a mixture of PSM with a greedy algorithm for 
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Table 1. The list of matching methods evaluated in the study

Method

1
2
3
4
5
6
7

Distance Measure

Propensity Score
Propensity Score
Propensity Score
Propensity Score

Mahalanobis
Mahalanobis

Propensity Score
Exact 

Matching Ratio

one-to-one
one-to-five
one-to-one
one-to-five
one-to-one
one-to-five
one-to-one

Variables included

All
All
All
All
All
All

Continuous
Binary

Matching Algorithm

Greedy
Greedy
Optimal
Optimal

N/A
N/A

greedy
N/A
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from an N(0.5,1) distribution. Furthermore, all the 
binary variables for the unexposed subjects were drawn 
from Bin(1,0.5) distribution, whereas for the exposed 
subjects, variables X7 - X9 were drawn from a Bin(1,0.5) 
distribution, and variables X10 - X12 were drawn from 
a Bin(1,0.75) distribution. The reason for choosing 
different variable distributions between exposed and 
unexposed subjects was to simulate confounding. If the 
distribution of a variable is different for exposed versus 
unexposed subjects, and if the variable is associated with 
the probability of the outcome, then such a variable is 
considered to be a confounder.

2.2.2. Outcome

We generated a binary outcome for each observation 
based on the values of the covariates. Binary outcomes 
are common outcomes in observational health-
care research. Some examples of binary outcomes 
include mortality, the presence or development of a 
comorbidity (e.g. cancer or heart disease), the presence 
or development of a symptom (e.g. pain), and hospital 
readmission. We assumed the following logistic 
regression model that relates the probability of outcome 
(Y) to the covariates (X1 - X12) and the assignment 
variable (exposed: T = 1; unexposed: T = 0).

      logit (pi,outcome) = α0,outcome + βTi + αNX1,i + αMX2,i 

                                                 + αHX3,i  + αNX4,i  + αMX5,i  + αHX6,i  
                              + αNX7,i  + αMX8,i  + αHX9,i  + αNX10,i  

   + αMX11,i  + αHX12,i

The regression coefficients were set to reflect no effect, 
a medium effect size, and a high effect size:

αN  = log (1), αM  = log (1.25), αH = log (2).

Here, α0,outcome was estimated three times using a Monte 
Carlo iterative process and bisection method (22), so 
that the probability of outcome in unexposed subjects 
was one of the following: 5% (rare outcome), 20% 
(common outcome), or 50% (frequent outcome). In 
addition, β was estimated using a separate Monte Carlo 
iterative process and bisection method (22), so that 
the risk difference between exposed and unexposed 
subjects equaled 0.1.

2.2.3. Monte Carlo simulations

We used a complete factorial design in which two factors 
are allowed to vary: the number of exposed subjects 
and the probability of outcome among the unexposed 
subjects. We randomly generated datasets with size 
1,500+N. In each case, there were 1,500 unexposed 
subjects and a varying number (N) of exposed subjects: 
N = 25, 50, 100, 150, 200, 250, or 300. This led to final 
datasets (exposed and unexposed subjects combined) 

continuous covariates and exact matching for binary 
variables. For three of the methods, we assessed both 
one-to-one matching, where each exposed subject is 
matched to only one unexposed subject, and one-to-
five matching, where each exposed subject is matched 
to five unexposed subjects. All matching algorithms 
were assessed without replacement, meaning that each 
unexposed subject can be matched to only one exposed 
subject.

2.1. Description of the matching methods

Propensity score matching identifies pairs of exposed 
and unexposed subjects based on propensity score and 
not based on any specific variable value. Propensity 
score is the probability of a subject being exposed based 
on its characteristics (2). Two algorithms are commonly 
used to determine how exposed and unexposed subjects 
should be matched based on propensity score (12):
 1). Greedy algorithm. Here, an exposed subject is 
matched to an unexposed subject with a propensity 
score closest to that of the exposed subject.
 2). Optimal algorithm. Here, all matched pairs 
are formed by minimizing the average within-pair 
difference of propensity scores.
 Mahalanobis distance matching (3,21) is another 
matching method that considers the overall distance 
between subjects, not the values of individual variables. 
This distance measurement is based on the Euclidean 
distance between two observations, and it takes into 
account the variance-covariance matrix (Ʃ). The 
Mahalanobis distance between two observations i and j 
with covariate vector x is defined as follows:

d2 (i,j) = (xi - xj)
T Ʃ-1 (xi - xj)

 Exact matching (3) is a method that examines the 
value of each variable, and it matches subjects only 
when they have the exact same values for matching 
variables. This method is most commonly used for 
discrete variables.

2.2. Description of the Monte Carlo simulations

We based the design of our study on previous studies 
by Peter Austin (8,12); however, we adapted it to our 
research question. The specific details for covariates 
and outcome simulations are presented below.

2.2.1. Covariates

For each observation, we generated six continuous 
variables and six binary variables with values of either 
0 or 1. For the unexposed subjects, each continuous 
variable was drawn from an N(0,1) distribution. For the 
exposed subjects, variables X1 - X3 were drawn from an 
N(0,1) distribution, and variables X4 - X6 were drawn 
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with sample sizes varying from 1,525 to 1,800. The 
results from any method with a one-to-five matching 
ratio when N = 300 are equivalent to those without 
matching, since in this case, one-to-five matching 
will include all exposed and unexposed subjects. This 
scenario is included in the study to illustrate the general 
significance of matching. Next, we generated 1,000 
samples from each of the 1,500+N observations, with 
error term ~N(0,1). We calculated the probability of 
outcome (pi,outcome) using the logistic regression model 
above, and we then used the probability to generate the 
outcome for each observation from binary distribution 
Bin(1,pi,outcome).

2.3. Analysis

Once the datasets were generated, we applied the seven 
matching methods described above in each of the 1,000 
samples of each scenario. We used all 12 covariates in 
the estimation of the propensity score model and the 
Mahalanobis distance. In each matched sample, we 
estimated the following characteristics:
 Bias of the estimate of risk difference. We estimated 
the prevalence of the outcome both in exposed and 
in unexposed subjects in each matched dataset and 
calculated the difference between them. The overall 
bias of the estimate was the difference of mean of this 
measure across the 1,000 samples and 0.1 (the risk 
difference set by simulations).
 Balance. we calculated the mean of absolute values 
of standardized difference between exposed and 
unexposed subjects across all the variables. The overall 
balance was the mean of this measure across the 1,000 
samples. This measure of balance was introduced by 
Austin (23) and is defined as follows:

 Coverage. For each matched dataset, we determined 
whether the 95% confidence interval for risk difference 
contained the true risk difference (24) (0.1). The overall 
coverage was the percentage of 1,000 samples in which 
the 95% confidence interval included 0.1.
 The simulations were conducted using SAS software 
(25), and the matching was performed using MatchIt 
(26,27) R package.

3. Results

3.1. Bias

We observed three noteworthy points when examining 
the bias of estimated risk difference across different 

outcome rates and sample sizes of the exposed subjects. 
First, the baseline outcome rate was a factor in how 
different matching methods performed when estimating 
the risk difference between exposed and unexposed 
subjects (Figure 1). When the outcome was rare (5%), 
the differences in the bias of estimated risk difference 
were smaller between the methods studied than when 
the outcome was frequent (20%) or common (50%). The 
outcome rate also seems to affect whether the methods 
lead to overestimation or underestimation of the risk 
difference. When the outcome was rare, all methods led 
to overestimation of the risk difference, and when the 
outcome was common or frequent, five of the matching 
methods (propensity score methods using one-to-five 
matching, Mahalanobis distance methods, and the 
mixture of propensity score and exact matching methods) 
also consistently overestimated the risk difference. 
While PSM methods with one-to-one matching did not 
necessarily estimate the risk difference exactly, they did 
not consistently overestimate or underestimate it.
 Second, the more common the outcome, the largest 
the bias in risk difference for fully matched samples. 
That is, in one-to-five matching with 300 exposed 
subjects, which is equivalent to no matching at all, the 
bias was largest for the frequent outcomes and smallest 
for the rare outcomes (Figure 1).
 Third, a difference in the performance of methods was 
found in very small samples (25-50 exposed subjects) 
and in moderately small samples (100-300 exposed 
subjects). In very small sample sizes, no method was 
found that clearly outperforms all others. Mahalanobis 
distance matching using one-to-five matching led to 
the largest bias in very small samples, independent of 
outcome rate. Moreover, all the propensity-score-only 
methods performed similarly in very small samples, 
and there is some indication that propensity score one-
to-five matching with the optimal algorithm performed 
especially well in the smallest samples (N = 25) (Figures 
1 and Figure 2). The mixture of propensity score and 
exact matching did not perform as well as propensity-
score-only matching methods in very small samples.
 In the moderately small samples, PSM with a 
one-to-one ratio, with either an optimal or a greedy 
matching algorithm, resulted in smaller bias than any 
other matching method. Furthermore, the mixture 
of propensity score and exact matching performed 
better than the Mahalanobis methods or any one-to-
five matching methods, but not better than propensity-
score-only one-to-one matching methods (Figures 1 
and Figure 2). In addition, independent of outcome rate, 
the performance of propensity-score-only one-to-one 
matching methods and a mixture of propensity score 
and exact matching methods were better in moderately 
small samples than in very small samples, which was 
not true for other matching methods (Figure 1). Finally, 
similar to very small samples, the bias was also the 
largest for one-to-five Mahalanobis distance matching 
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in moderately small samples.

3.2. Balance

As with the bias of estimated risk difference, the 
method that leads to the best balance differs between 
very small samples of exposed subjects (N = 25–50) 
and moderately small samples (N = 100–300). In very 
small samples, all propensity-score-based matching 

methods performed similarly well, with the exception of 
propensity score one-to-one matching with an optimal 
algorithm. In moderately small samples, similar to bias 
in most cases, propensity score one-to-one matching, 
with either optimal or greedy algorithm, lead to the best 
balance between exposed and unexposed subjects. All 
the matching methods with one-to-five matching result 
in worse balance, especially as the sample size increases 
(Figure 3).

Figure 1. The bias of risk difference across different samples sizes of exposed subjects and different matching methods when outcome is 
rare (panel A), common (panel B), and frequent (panel C).
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Figure 3. The balance of covariates in matched datasets, defined as mean standardized difference. The balance is evaluated across different 
sample sizes and different matching methods.

Figure 2. The bias of estimated risk difference when number of exposed subjects is 25 (Panel A), and when number of exposed subjects is 
200 (Panel B). The bias is evaluated across different outcome rates and different matching methods.
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3.3. Coverage

In very small samples, all of the matching methods 
result in 95% confidence intervals that include the 
true risk difference between 83.2% and 91.8% of the 
time. Overall, methods based on propensity score only 

perform better than other methods, especially as the 
sample size increases. In very small samples, methods 
with one-to-five matching ratio outperformed methods 
with one-to-one matching ratios (Figure 4).
 As the number of exposed subjects increased, 
increasing the matching ratio led to a loss of accuracy. 

Figure 4. The coverage of matching methods, defined as percent of matched datasets in which the 95% confidence intervals contains the 
true risk difference, when outcome is rare (panel A), common (panel B), and frequent (panel C). The coverage is evaluated across different 
sample sizes and different matching methods.
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Therefore, for the moderately small samples, the 
coverage was the best when using one-to-one PSM, in 
which case the 85% confidence intervals (CIs) included 
a true risk difference between 85% and 90%. Finally, 
across all sample sizes of exposed subjects, the mixture 
of propensity score and exact matching resulted in 
worse coverage than propensity-score-only matching 
methods (Figure 4).

4. Discussion

In this study, we used Monte Carlo simulations to 
evaluate and compare the performance of several 
matching methods for a small sample of exposed 
subjects. The methods we considered were based on 
propensity scores, the Mahalanobis distance, and a 
mixture of propensity score and exact matching. We 
considered a combination of continuous and binary 
variables, various baseline outcomes rates, and various 
numbers of exposed subjects in a dataset.
 Our study demonstrates that differences exist in the 
performance of matching methods between very small 
samples (N = 25-50) and moderately small samples 
(N = 100-300). Based on the results of our study, we 
conclude that in very small samples, PSM still performs 
better than matching based on the Mahalanobis 
distance; however, there are still differences between 
PSM algorithms and ratios. Depending on the goal 
of the matching analysis, different methods might be 
considered. Both algorithms in one-to-one matching 
lead to a relatively small bias, and some evidence 
was found that in very small sample sizes, one-to-
five matching with an optimal algorithm results in the 
smallest bias. The mixture of propensity score and 
exact matching does not perform as well as methods 
that include both continuous and binary variables in the 
estimation of propensity scores, and it should therefore 
not be used in studies with very small samples. 
Furthermore, propensity score one-to-one matching 
with an optimal algorithm results in a relatively high 
imbalance in the distribution of covariates, but the 
greedy algorithm in one-to-one matching performs 
better. Propensity score one-to-five matching results 
in the highest coverage when the number of exposed 
subjects is very small. Therefore, if the goals of the 
matching are to decrease the bias of estimated risk 
difference, increase the balance in covariates, and 
increase the coverage of 95% confidence intervals in 
very small samples, then propensity score one-to-five 
matching with an optimal algorithm should be used.
 In moderately small samples, PSM with an optimal 
algorithm performs similarly to PSM with a greedy 
algorithm, and they both perform better than matching 
on the Mahalanobis distance. In addition, one-to-
one matching leads to a smaller bias of estimated risk 
difference, better balance, and better coverage than one-
to-five matching. The poor performance of one-to-five 

matching in moderately small samples is likely a result 
of the lack of high-quality matches once the sample size 
of exposed subjects increases. Nonetheless, propensity 
score one-to-one matching is the better method in 
moderately small samples.
 Our study also demonstrates that the baseline 
outcome rate affects the size of the bias in estimated 
risk difference, but it does not necessarily influence 
which method performs best compared to others. The 
more important factor in distinguishing between the 
methods is the number of exposed subjects.
 Our results are similar to other studies that have 
suggested that there is no clear best-matching method. 
Fullerton et al. assessed the performance of propensity-
score-based methods and exact matching methods 
in terms of balance (28). While their study was not 
performed using small samples, it concluded that the 
best method is sensitive to the definition of balance, 
and they recommended that best practice would be to 
include the application of several matching methods. 
Moreover, a study by Baser examined the performance 
of different PSM methods (29) in a large sample; it 
also concluded that no superior method exists and 
that sensitivity analysis should be used. In one of the 
rare studies with small samples, Pirracchio found that 
PSM matching methods lead to unbiased results for 
estimating marginal odds ratios (9). Our study builds on 
these conclusions and demonstrates that there is no one 
superior propensity-score-based matching method in 
small samples, but that any such method is better than 
the Mahalanobis-distance-based method or a mixture of 
propensity score and exact matching methods.
 One other important point in analyzing matching 
samples is the statistical significance. Our study 
suggests that, as expected, one-to-five matching can lead 
to a higher bias than one-to-one matching. However, 
the higher number of subjects in a comparison sample 
increases the accuracy of statistical comparisons, as 
revealed by the increased coverage of one-to-five 
matching in very small samples. This increase in 
coverage might be more important in studies with a 
small number of exposed subjects than in larger studies. 
In small samples, variability is a more significant 
problem; therefore, adding more observations to the 
analysis might have an important impact. Prior studies 
have found possible benefits of one-to-many matching 
(7,30) and the optimal matching ratio for decreasing 
bias but increasing power. Those studies, however, did 
not focus on scenarios when samples are very small, 
and our finding is thus significant.
 While our study explored different scenarios in 
terms of sample size and outcome rates, it has several 
limitations, and other topics should be studied further. 
For example, the optimal caliper width was not studied 
in small samples. In such samples, the trade-off between 
the percentage of observations matched and the quality 
of matches might be different than in large samples. In 
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addition, in our study, we did not examine the effects 
of including in the propensity score model matching 
variables that are not associated with the exposure and/
or outcome. The effect of including variables with little 
or no associations should be studied more closely, since 
inclusion of variables might have a major impact in 
small samples.
 Our study has significance in several applications, 
such as health-care research; pharmacoepidemiology; 
clinical effectiveness studies; and health economics 
studies in rare diseases based on nonexperimental 
observational studies, secondary data, or registries. 
Studies in health-care research can be time and 
resource consuming, and often only samples of limited 
sizes can consequently be collected. It is important 
to ensure that the results and conclusions of those 
studies are accurate, as they might lead to significant 
policy changes. Similarly, pharmacoepidemiological 
studies and research in clinical effectiveness are 
also often performed using small groups of patients; 
therefore, appropriate methods are imperative to ensure 
drug safety. For example, the number of innovative 
treatments developed for rare diseases is growing each 
year, and an increasing number of them are licensed 
on the fast track (31,32). Studies that do not undergo a 
regular approval process require subsequent additional 
pharmacovigilance, relative effectiveness, and health 
economics studies (33). The validity of methods used in 
these studies is of high importance.
 In conclusion, our study demonstrates that PSM 
performs better than other matching methods in 
terms of bias in estimating risk difference, coverage, 
and balance of covariates, when matching a small 
number of exposed subjects to a larger dataset of 
unexposed subjects. Based on the results of the study, 
we recommend that a higher matching ratio (e.g. one-
to-five) be used in very small samples, and a lower 
matching ratio (e.g. one-to-one) be used as the sample 
size of exposed subjects increases. It is unclear whether 
a greedy or an optimal algorithm performs better in 
PSM, and our recommendation is that both algorithms 
be performed as sensitivity analyses.
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