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The impact of the intestinal microbiome on bone health
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1. Introduction

Microbial groups, which are symbiotic in the human 
body or on the surface of the human body and cause 
various diseases under certain conditions, are collectively 
known as the human microbiome. This concept was first 
proposed by Lederberg et al. (1). There are many types 
of bacteria that populate the intestines of humans and 
animals. For example, the number of microorganisms in 
the body and the proportion of cells can reach a ratio of 
10:1, and there are more than 10 trillion bacteria (2) that 
encode 100-fold more genes than those in the human 
genome (2). Thus, the intestinal microbial flora are 
known as the "second gene pool" of the human body (2).

 Like human organs, human intestinal microflora 
have significant effects on immune function, nutrient 
uptake, and various life activities of host cells (3) as 
well as on various diseases and conditions in the human 
body. The microbial flora of the gut affect an organism 
by changing the balance of bacteria and metabolites 
(4), which can lead to changes in metabolic processes 
and induce the development of various diseases such 
as ulcerative colitis in inflammatory bowel disease 
(5) and Crohn's disease (6). Microbial flora can also 
cause many other common diseases including obesity 
(7), diabetes (8), and other endocrine system diseases, 
as well as cardiovascular diseases (9). Intestinal 
flora also affect diseases such as immune system-
induced rheumatoid arthritis (10) and systemic lupus 
erythematosus (10). A study on cancer found that 
Bifidobacterium can improve anti-tumor immunity in 
mice (11). Conversely, Fusobacterium nucleatum can 
promote colorectal cancer resistance chemotherapy in 
cancer treatment (12). In addition, changes in intestinal 
microbial flora can induce inflammatory reactions in the 
host and change neurotransmitter metabolism, resulting 
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in neurological dysfunction (13), depression, mental 
decline, and other problems (14,15). An imbalance in 
intestinal flora affects many diseases, whereas intestinal 
flora in homeostasis can prevent diseases. For example, 
intestinal microbial flora attach to the intestinal mucosa 
to form a protective barrier to defend against invasion 
by exotic pathogenic microorganisms (10). Intestinal 
flora can also stimulate an organism to produce an 
immune response to microbial antigens and to produce 
more lymphocytes (16). The resulting immunoglobulin 
G (IgG) antibodies can induce the organism to 
eliminate pathogenic microorganisms by identifying 
Gram-negative bacteria and neutralizing toxins and 
viruses (17), thereby promoting maturation of the 
immune system. This protects against inflammation 
and infection and improves immune function in the 
host (6,17). The current review provides updated 
information on the intestinal microbial flora and their 
affect on bone health.

2. Intestinal microbial flora and bone disease

2.1. Intestinal microbial flora and genetic factors

The relationship between human intestinal microbes 
and host genetic variation (18-22) is one in which 
the latter affects the composition of human intestinal 
microbes (19,20). A single-nucleotide polymorphism 
(SNP) (C/T-13910) of the European lactase (LCT) gene 
and SNPs (G/C-14010, T/G-13915, and C/G-13907) 
in the African LCT gene are associated with the 
abundance of Bifidobacterium in the gastrointestinal 
tract. These SNPs were found to significantly enhance 
transcription of the LCT gene promoter in vitro and to 
facilitate the hydrolysis of lactose in the gastrointestinal 
tract by lactase, thus directly affecting the persistence 
of LCT (23). Bifidobacterium in the gastrointestinal 
tract can also metabolize host lactose (24). LCT gene 
mutations may indirectly regulate the abundance 
of Bifidobacterium in the gastrointestinal tract by 
altering its lactose levels. Ruminococcaceae and 
Lachnospiraceae are the two main families of human 
intestinal microorganisms and are more similar in 
identical twins than in fraternal twins (25). The host 
genotype can regulate the abundance of many microbial 
flora.
 Microbia l  d ivers i ty  i s  cont ro l led  by  both 
environmental and host genetic factors and is related 
to multiple diseases. Toll-like receptor (TLR) 5 gene-
deficient mice have signs of metabolic syndrome 
including hyperlipidemia, hypertension, and obesity. 
After intestinal microflora were transferred from 
TLR5 gene-deficient mice to wild-type aseptic mice, 
the aseptic mice also exhibited the characteristics of 
metabolic syndrome, which were related to changes 
in microbial flora in the gut (26). Next-generation 
sequencing of genes in the gastrointestinal tract and 

quantitative trait loci (QTL) mapping have revealed that 
some host genes can change gut immunological profiles 
and modulate the balance between gut microbial 
communities. For example, the interferon gene-
rich QTL region located on chromatin 4 modulates 
Firmicutes and Bacteroidetes, which are dominant BXD 
strains among gut microbes. Interleukin-1 receptor-
associated kinase (IRAK) 4 modulates Rikenellaceae 
while TGF-β3 modulates Prevotellaceae (27). 
 Genetic variations in the genome may occur during 
the process of adapting to the environment, causes 
specific changes in microbial groups. Some loci can 
control a single microbial species, the associated taxa 
of certain microorganisms, and some of the associated 
microbial populations that are presumed to be more 
efficient and widely distributed (27). In addition, the 
gut flora have certain effects on host gene mutations. 
Some strains of Escherichia coli have a polyketide 
synthase (PKS) gene island that induces DNA 
mismatch repair in host intestinal epithelial cells by 
encoding gene toxins that cause tumors (28). Moreover, 
the superoxide anion produced by Enterococcus also 
causes host DNA damage and genomic instability, 
resulting in intestinal epithelial cell mutations that 
trigger colorectal cancer (29).

2.2. Intestinal microbial flora and osteoporosis

Osteoporosis is a metabolic bone disease that results 
in decreased bone mass and bone mineral density 
and that induces changes in bone microstructure 
(30). This disease is mainly influenced by heredity 
and environmental factors, and many studies have 
confirmed that there is a certain relationship between 
intestinal microbial flora and osteoporosis (30). 
An estrogen deficiency leads to bone loss-induced 
osteoporosis, and the use of surgical ovarian resection 
(OVX) or sexual hormone inhibition causes a lack of 
estrogen in mice (31). When OVX mice were treated 
with Lactobacillus acidophilus, the level of bone 
resorption markers decreased and osteoclast formation 
was inhibited (31). In addition, the number of T 
lymphocytes in OVX mice decreased and osteoclast 
formation was inhibited by Lactobacillus reuteri (32). 
Type I diabetes can also induce osteoporosis. A study 
reported that L. reuteri can inhibit the expression of 
tumor necrosis factor (TNF) and Wnt10b, preventing 
bone loss and bone marrow adiposity in a mouse model 
of type I diabetes (33).
 Recent studies have found that intestinal microflora 
can regulate growth factor insulin-like growth factor 
(IGF)-1 levels, and thus regulate bone formation 
and absorption in young and middle-aged mice. The 
levels of IGF-1 decreased when antibiotics were used 
to destroy intestinal microflora in young mice (34). 
In addition, intestinal microbes were able to mediate 
the regulation of bone metabolism by altering bone 
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adding a proper amount of calcium to the diet can help 
treat inflammation and maintain the homeostasis of 
intestinal microbes to prevent osteoporosis mediated by 
vitamin D (42,43).

3. The mechanism(s) by which intestinal microbes 
affect bone health

3.1. Immune-mediated mechanisms

Intestinal microflora affect bone remodeling, bone mass 
accumulation (44), and bone health in a variety of ways 
(Figure 1). They can impact bone health via the immune 
system (35), which regulates the development of bone 
marrow cells and inflammatory cytokines. In germ-
free (GF) mice, the number of myeloid cell progenitors 
decreased and the response to Listeria monocytogenes 
was impaired. These defects were remedied by 
transplantation of complex microbiota. Therefore, gut 
bacteria mediate innate immune cell development by 
increasing hematopoiesis (45). GF mice have fewer 
granulocyte-monocyte progenitors (GMPs). GF mice 
also have fewer CD11b+ Ly6C+ mononuclear cells and 
CD11b+ Ly6G+ granulocytes in the bone marrow than 
do specific pathogen-free (SPF) mice, but the formation 
of bone marrow was improved by the administration of 
serum isolated from SPF mice (46).
 In addition, many studies have recently revealed 
the close relationship between intestinal microflora and 
regulatory T cells (Tregs) and helper T cells (Th cells) 
(31,47-49). Clostridium colonization in gnotobiotic 
mice resulted in preferential accumulation of Tregs in 
colonic lamina propria (50). The presence of intestinal 
bacteria might affect both the number and function of 
Tregs. Transforming growth factor beta (TGF-β), a key 
regulator of Treg development, is abundant in the colon 
in its active form. Similar findings were obtained with 

immune status (35). Sterile mice had a significant 
increase in bone mass and a significant decrease in the 
number of osteoclasts, the number of CD4+ T cells 
derived from the bone marrow, and the number of 
osteoclast precursor cells compared to normal mice. 
While the number of osteoclasts, CD4+ T cells, and 
osteoclast precursor cells returned to normal in 3-week-
old sterile mice treated with intestinal microbial flora 
and the quality of bone trabecular and cortical bone 
decreased, the expression of inflammatory cytokines in 
bone decreased significantly (35).
 Intestinal disorders can cause inflammatory bowel 
disease (36), which can increase the risk of osteoporosis 
and related brittle fractures (37). The reduction in bone 
associated with inflammatory bowel disease is mainly 
due to insufficient calcium absorption and a decrease in 
the cycling levels of vitamins D and K (38). In addition, 
the inflammatory reaction caused by the lack of sex 
steroids can promote bone resorption, resulting in the 
loss of trabecular bone. The probiotic Lactobacillus 
rhamnosus GG (LGG) can reduce inflammation in the 
intestine and bone, improve intestinal permeability, and 
prevent bone loss (39,40). 
 When an imbalance of intestinal flora homeostasis 
occurs during intestinal inflammation, the intestinal 
absorption of vitamin D can help to treat enteritis, 
thereby reducing intestinal permeability and avoiding 
the impact of that imbalance on bone health (41). 
Vitamin D has beneficial effects in bones (42). When 
calcium supply is sufficient, the absorption of vitamin 
D and its metabolites in the gut can maintain the 
homeostasis of intestinal flora, thus improving the 
calcium balance and promoting mineral deposition in 
the bone matrix. In the absence of calcium, vitamin 
D can enhance bone resorption while inhibiting 
bone mineralization, thus maintaining blood calcium 
homeostasis at the expense of bone mass. Therefore, 

Figure 1. Mechanisms by which intestinal microbes affect bone health.
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regard to other Treg-inducing molecules within the colon 
(50). Moreover, the induction of interleukin (IL)10-
expressing Foxp3+ Tregs was specifically restricted in 
Clostridium but not in other bacteria. In addition, CD4+, 
CD25+, and Foxp3+Treg cells suppress macrophage 
colony-stimulating factor and osteoclast formation. 
This action is mainly through cytotoxic T-lymphocyte 
associated protein 4, an anti-osteoclastogenic molecule 
that binds osteoclast precursor cells and that inhibits its 
differentiation (51-53).
 The bacterial segment in the gut is the driving force 
for Th17-assisted cell differentiation, which plays an 
important role in bone loss induced by rheumatoid 
arthritis (54,55). Intestinal flora disorders disrupt 
the balance of the pro-osteoclastogenic pathway and 
induce osteoclast-mediated bone loss in multiple 
ways, including the differentiation and inhibition of 
anti-osteoclastogenic Th1, Th2, and Treg subsets. 
This induces the differentiation of Th17 cells, which 
produce and increase RANKL expression on stromal 
cells, much like inflammatory cytokines (52,56-58). In 
addition, the number of osteoclast precursor cells also 
increases, thus promoting osteoclast differentiation (47). 
Microbial populations affect B cell development as well 
as bone resorption by osteoprotegerin, an inhibitor of 
osteoclasts produced by B cells (59).

3.2. Endocrine-mediated mechanisms

Intestinal microflora as a virtual "endocrine organ" (60) 
have certain effects on bone health. Sex hormones are 
vital in maintaining bone homeostasis, and a lack of 
these hormones can result in a decrease of microbial 
flora in the gut, thus increasing bone loss and affecting 
bone formation (40). In addition, a lack of sexual 
hormones increases the activity of osteoclasts and 
osteoblasts, although osteoclasts are more affected and 
bone loss is significant (61).
 Sex steroid deficiency increases intest inal 
permeability and levels of the osteoclastogenic 
cytokines TNF, RANKL, and IL-17 in a murine model 
while GF mice were protected from bone loss (39). 
Supplementing the indigenous microbiota with the 
probiotic LGG prevents sex steroid-induced bone loss by 
inhibiting intestinal permeability. However, ingestion of 
nonprobiotic or mutant LGG eliminates this protective 
action. These findings indicate that gut microbiota serve 
as a dual role in sex steroid deficiency-induced bone 
loss (39). Moreover, excess glucocorticoid reduces the 
number of both osteoblasts and osteoclasts, it prolongs 
the lifespan of osteoclasts, and promotes apoptosis of 
osteoblasts and osteocytes (62,63).

3.3. Changes in intestinal flora affect bone health

Changes in intestinal microbial flora and their 
metabolites affect bone health directly or indirectly 

(47). The effects of microbial flora (64), probiotics (65), 
antibiotics (66), and dietary nutrition (67) also affect 
bone health. Probiotic dietary supplements containing 
Bacillus licheniformis and B. subtilis increased the 
diversity of intestinal flora, causing the tibial density in 
chickens to significantly increase compared to chickens 
fed a normal diet (68). Antibiotics can affect intestinal 
flora, and these effects are related to age, sex, and 
duration of treatment. The bone density of 3-week-old 
weaning mice dramatically increased when they were 
exposed to low doses of penicillin, chlortetracycline, 
or vancomycin compared to 7-week-old weaning mice 
(69). As a result of continuous treatment with low-dose 
penicillin (LDP), bone mass decreased in all male mice, 
regardless of whether or not they were exposed to LDP 
post-weaning or if the pregnant mother was exposed. 
These controversial results were replicated in several 
types of female mice administered LDP. LDP treatment 
in early life transiently disturbed the microbiota and 
altered the composition of the microbial community 
(66,69).  
 In addition, intestinal flora and different levels of 
nutrition affect bone health. Several studies transplanted 
the intestinal microflora of healthy and malnourished 
infants into sterile mice and found that malnourished 
infants with transplanted intestinal microorganisms had 
delayed development and abnormal skeletal muscle 
development (70). The effect of intestinal flora on bone 
health can by mediated by metabolites. The intestinal 
flora can digest soluble grain fiber in the diet into 
short-chain fatty acids (SCFAs), which lower the pH 
of the gut, contribute to calcium uptake, and inhibit the 
formation of osteoclasts (71). The G-protein-coupled 
receptors GPR40 and GPR120 superficially bind 
medium- and long-chain fatty acids, and a GPR40/120 
agonist inhibits fatty acids in osteoclastogenesis. 
GPR120 acts as a mediator of the anti-osteoclastogenic 
action of C16 and C18 fatty acids (72).

4. Intestinal microbial groups and osteogenic/
osteoclasts and bone marrow mesenchymal cells

Bone marrow mesenchymal stem cells are pluripotent 
stem cells that can differentiate into various mesodermal 
lineages (73). Osteoblasts are the main cells that 
promote bone development and bone remodeling 
(74). Osteoblasts directly interact with bone cells, 
osteoclasts, and hematopoietic stem cells (74), thereby 
maintaining homeostasis between bone formation and 
bone resorption (74,75).
 Studies have described the interaction between 
intestinal microflora and bone-related cells. Intestinal 
microflora influence the expression of peripheral and 
central serotonin (76). Peripheral serotonin is primarily 
produced in the gut, and intestinal flora such as 
indigenous spore-forming bacteria may play a catalytic 
role in the production of serotonin (77). Peripheral 
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serotonin functions as a hormone to inhibit osteoblast 
proliferation through 5-hydroxytryptamine receptor 1B 
(5-HT1BR) and cAMP response element binding protein 
(CREB) (78), thereby reducing bone density and bone 
formation. The level of serotonin expression is lower in 
the intestinal tract of sterile mice and can be increased 
by transplanting E. coli Nissle 1917 into ileal tissue ex 
vivo, where it interacts with compounds secreted by host 
tissues (79). The use of probiotics can improve intestinal 
flora, reduce serotonin content, and alleviate bone disease 
(65,80). Central serotonin acts as a neurotransmitter 
to increase bone mass by calmodulin kinase (CaMK)-
dependent signaling involving CaMKKβ and CaMKV, 
which are mediated by CREB (76).
 Osteoclasts are functionally related to osteoblasts 
and are involved in bone resorption (35). Intestinal 
bone signaling pathways and microbial populations 
play an important role in regulating bone health (64). 
Decreases in estrogen in postmenopausal women result 
in an increase in inflammatory factors and osteoclast 
formation (81). In a model of osteoporosis in OVZ 
rats, expression of the inflammatory cytokines TNFα 
and IL-1 decreased, osteoprotegerin levels increased, 
and osteoclast formation was inhibited (35) when 
Lactobacillus strains and other probiotics were given to 
OVZ rats (35).
 A reduction in the diversity of the intestinal microbiota 
has been noted and specific taxonomic preferences have 
been identified in Crohn's disease and ulcerative colitis 
(6). In a mouse model of ulcerative colitis induced with 2, 
4, 6-trinitrobenzene sulfonic acid, bone marrow stromal 
cells (BMSCs) were implanted in intestinal mucosa, 
where they repaired damaged intestinal tissue. This may 
be because BMSCs differentiate into colonic stromal 
cells and express vascular endothelial growth factor 
and TGF-β1 in the injured region (82,83). BMSCs also 
have immune-regulatory effects on antigen-specific T 
cells in Crohn's disease through direct cell-cell contact 
(84), inhibiting allogeneic antigen-specific responses 
and mitogen-induced proliferation (85), preventing 
the production of cytotoxic T lymphocytes. In general, 
there is growing evidence that BMSCs could be used to 
treat inflammatory bowel disease caused by a disorder 
in intestinal flora, but the precise molecules and 
mechanisms responsible for immune regulation need to 
be ascertained (86).

5. Conclusion 

Understanding the correlation between intestinal 
microbial flora and bone health paves the way for further 
studies on the treatment of bone diseases by intestinal 
microbes. Intestinal microbial flora influence bone 
health through the immune system, endocrine system, 
and various bone-related cells. An increasing number 
of studies on osteoporosis have suggested the beneficial 
effects of probiotics in terms of increasing bone mass. 

This provides a basis for treating hereditary bone 
diseases, which involve abnormal bone, cartilage, joint, 
and other related tissues due to pathogenic mutations in 
genes. The relationship between pathogenic mutations 
that cause genetic bone diseases and intestinal microbial 
flora remains unclear and needs to be studied further. 
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