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1. Introduction

Prader-Willi syndrome (PWS) is the most common 
cause of obesity and intellectual disability, occurring in 
about 1 in 15,000 in the general population (1-3). PWS 
is characterized by hyperphagia and lack of satiation 
after meals. Typical physical features include: a round 
face, narrow palpebral fissures, short stature, small 
genitalia, and short fingers and toes. Behavioral and 
cognitive features include mild intellectual disability 
(ID), poor attention, obsessive behavior particularly 

around food so that food hoarding and food stealing are 
common, excessive skin picking, and remarkably good 
ability with puzzles. PWS is caused by an absence of 
expression of imprinted genes in the paternally derived 
PWS/Angelman syndrome (AS) region (15q11.2-q13) of 
chromosome 15 by one of several genetic mechanisms 
(paternal deletion, maternal uniparental disomy and 
rarely an imprinting defect) (2).
 Fragile X syndrome (FXS) is the most common 
inherited cause of ID and Autism Spectrum Disorder 
(ASD) and it is caused by a CGG trinucleotide 
expansion of over 200 repeats (full mutation) in the 5' 
region of the fragile X mental retardation 1 gene (FMR1) 
at Xq27.3. This full mutation leads to hypermethylation 
of FMR1 and a subsequent lack of transcription and 
translation, which in turn results in a deficiency of the 
FMR1 protein (FMRP). The FMRP is an RNA binding 
protein that mainly negatively regulates the translation 
hundreds of genes, many of which are critical for 
synaptic plasticity (4). The prevalence of FXS is 1 in 
5,000 males and 1 in 8,000 females (5). The features of 
FXS include hyperactivity, attentional problems, poor 
eye contact, hand-flapping, anxiety, hyperarousal and 
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a lack of habituation to sensory stimuli. The physical 
features of FXS include a long face, prominent ears, 
hyperextensible finger joints and flat feet. Males with 
FXS have macroorchidism during and after puberty 
with a normal phallus. Although the clinical phenotype 
is very different between PWS and FXS there is 
a subgroup of individuals with FXS that develop 
hyperphagia, obesity, and hypogonadism or delayed 
puberty. Because this phenotype looks like those 
with Prader-Willi syndrome, it is described as Fragile 
X syndrome - Prader-Willi phenotype (FXS-PWP) 
(Figure 1A and 1B). This phenotype in FXS was first 
reported by Fryns et al. (1987) and has subsequently 
been described by others (6-10). This phenotype is not 
related to a deletion of 15q11-q13 nor due to maternal 
uniparental disorders, and it occurs in less than 10% of 
individuals with FXS (11). Although short stature and 
small fingers and toes can sometimes occur in the FXS-
PWP this is not seen in the majority of cases. Nowicki 
et al. (2007) found lower cytoplasmic interacting FMR1 
protein 1 (CYIP1) levels in the blood of patients with 
the FXS-PWP compared to those with FXS without the 
PWP (6). They also found a higher rate of ASD in those 
with the FXS-PWP compared to FXS alone (6). 

2. Neurobiology of FXS with PWP

Patients with the FXS-PWP have hyperphagia that arises 
in childhood (6), as is the case in PWS. Even though 
there is no clear molecular explanation underlying 
hyperphagia in FXS, it is hypothesized that it arises from 
dysregulation of gamma-aminobutyric acid (GABA) 
system in the hypothalamus. The lateral hypothalamus 
(LH) is a critical modulator of feeding (12,13). A 
previous study by Jennings et al. demonstrated that 
GABAergic (Vgat-expressing) neurons in the LH are 
responsible for producing appetitive and consummatory 
behaviors (14). FXS animal models have lowered GABA 
subunit receptors, synthesis of GABA, GABAergic input 
to many regions of the brain, and increased catabolism 
of GABA (15,16). Similarly, cerebral GABAA receptor 
expression is reduced in several brain regions of subjects 
with PWS (17). 
 There is a high rate of ASD (7 of 13, 54%) in the 
patients with FXS-PWP (6). This may be related to 
the reduction mRNA levels of the CYFIP1, which was 
found to be two to fourfold lower in the patients with 
FXS-PWP compared to individuals without FXS and 
patients with FXS without the PWP (6). CYFIP1 is 
localized to the critical region for PWS at 15q between 
breakpoint 1 and 2 (18). FMRP binds to CYFIP1 (19) 
in the execution of its role as a transporter and regulator 
of translation of mRNAs (20-22). CYFIP1 expression 
levels are vital for dendritic arborization and neuronal 
morphological complexity (23). Neurons from CYFIP1 
haploinsufficient animals have smaller and less 
complex dendritic branching both in vitro and in vivo 

(23). Another reason could be due to dysregulation of 
oxytocin (OT) and arginine vasopressin (AVP) in the 
brain. The dysregulation of the OT system in animals 
and humans is linked with marked deficits in social 
behavior and anxiety (24). There is a scarcity of OT 
producing neurons in the paraventricular nucleus of 
the hypothalamus (PVN) in individuals with PWS 
(25) and in the Fmr1 KO (knock-out) mice (24). OT 
administration increases trust and diminishes disruptive 
behavior in individuals with PWS (26); in those with 
FXS OT therapy improves social anxiety (27).

3. Treatment

In the treatment of autism, use of intensive early 
behavioral intervention, such as the Early Start 
Denver Model (ESDM) has been shown to improve 
developmental and social outcome in addition to 
normalization of the EEG abnormalities compared to 
those treated with community behavioral interventions 
(28). Such intervention is also recommended in young 
children with FXS both with and without autism or 
the PWP (29,30). A variety of medication use can be 
helpful for those with FXS both with and without the 
PWP including; stimulants which can help with attention 
and appetite; Selective Serotonin Reuptake Inhibitors 
(SSRIs), such as sertraline for anxiety (31); and 
atypical antipsychotics, such as aripiprazole to stabilize 
mood, improve autism, aggression and/or tantrums 
(6). However, aripiprazole can cause an increase in 
weight gain and particularly for those with a CYP2D6 
polymorphism that can slow down the metabolism of 
aripiprazole (32). 
 There are a variety of new-targeted treatments 
that have been studied in those with FXS. To enhance 
the GABA deficits in FXS, the GABAB agonist, 
arbaclofen, showed initial benefit for those with ASD 
or low sociability (33). However, the subsequent 
phase 3 trial in children and adolescents and adults did 
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Figure 1. 11 year old with FXS and PWP, showing severe 
obesity, small hands and mild facial dysmorphic features 



www.irdrjournal.com

Intractable & Rare Diseases Research. 2016; 5(4):255-261.257

The observed benefits of the IGF-1 analogue in the 
KO mouse FXS model support the likelihood that GH 
therapy should be beneficial in the FXS-PWP. GH 
stimulates the release of IGF-1 by the liver and this 
may be the mechanism for the benefit of GH therapy. 
IGF-1 enhances GABA activity that is deficient in 
FXS both with and without the PWP (Figure 2)(45). In 
addition, the GABAB receptor-mediated transactivation 
of IGF-1 receptors leads to cAMP response element-
binding protein (CREB) activation which in turn binds 
to FMR1 and increases FMRP levels (46). Therefore, 
GH in FXS-PWP could stimulate the release of IGF-1 
to enhance the GABA system, and increase the residual 
expression of FMR1 particularly in those who are 
mosaic or partially unmethylated. Further studies are 
necessary to determine the molecular benefits of IGF-1 
analogues and GH in FXS. 
 In general, metabolic anomalies are suspected in 
FXS because about 30% are obese (47). Metabolic 
anomalies including increased glucose uptake and 
excess protein synthesis in the brain have been 
reported in Fmr1 KO mice, while in the fly (dfmr1), 
it has been shown that FMRP is required during 
brain development and may function in neuroblast 
reactivation by regulating an output of the insulin 
signaling pathway (48-52). Metabolic profiling in the 
Fmr1 KO mice also revealed profound consequences 
in brain metabolism, which in turn lead to alterations in 
the metabolic response, along with anomalies in other 
physiological processes and behaviors (53). Using 
Drosophila as a model of FXS it has been shown that 
the dfmr1 has elevated levels of drosophila insulin-like 
peptide 2 (Dilp2) in the insulin-producing cells which 
result in elevated insulin-signaling via the PI3K/Akt/
mTOR pathway (54). It is also known that increased 
insulin-signaling leads to defects in the circadian 
output pathway and in short and long-term memory 

not demonstrate efficacy (34). The GABAA agonist 
ganaxolone is being studied in children 6 to 17 years old 
at the MIND Institute at UC Davis Medical Center and 
in Belgium utilizing the same protocol (https://www.
clinicaltrials.gov [NCT]: ID number NCT01725152). 
Results from this study are expected before of the end 
of this year. The mGluR5 antagonists developed by 
Roche and Novartis have not demonstrated efficacy 
in adult and childhood studies, but further studies are 
planned for an mGluR5 antagonist. Minocycline has 
been studied in children with FXS and has demonstrated 
some efficacy so it is often utilized clinically (35,36). 
Other trials included at multiple centers included 
metadoxine for improving attention and focus and the 
IGF-1 analogue developed by Neuren for the treatment 
of behavioral problems. However, those with the FXS-
PWP of are not typically included in such clinical 
trials because their level of obesity is beyond what is 
acceptable for inclusion in these trials. Therefore, there 
are no studies of the treatment in those with FXS-PWP.
 In contrast, human growth hormone (GH) has been 
the panacea for treatment of PWS over the last decade 
(37,38). Most individuals with PWS, but not all, are 
deficient in GH and studies that were initially focused 
on improving growth have not only demonstrated 
this effect, but also improvements in metabolism, 
body composition, behavior and cognition (38-44). 
However, GH therapy on occasion can be associated 
with significant side effects, such as the stimulation of 
adenoid tissue leading to obstructive sleep apnea so it 
should be used carefully in the treatment of PWS. GH 
can also promote the growth of some malignant tumors 
so such a history is a contraindication for GH therapy. 
Since GH therapy has been so beneficial to those with 
PWS and because there are remarkable similarities 
between PWS and the FXS-PWP, it is possible that 
those with the FXS-PWP will benefit from GH therapy. 

Figure 2. Suggested mechanism of action of GH. GH stimulates the liver to release IGF-1, which activates CREB, and this 
increases FMRP in neurons. The increase of FMRP leads to increased GABAergic input to some areas of the brain.



www.irdrjournal.com

Intractable & Rare Diseases Research. 2016; 5(4):255-261. 258

deficits. Interestingly, pharmacological restoration 
using metformin, rescued memory deficits in the dfmr1 
(54). Metformin is known to decrease body mass index 
(BMI) and to prevent cognitive deficits in individuals 
with diabetes (55-59). Metformin decreases protein 
synthesis and insulin-signaling via the AMPK/Akt/
mTOR pathway, it also inhibits the lipid and sterol 
biosynthetic pathways (60-63) (Figure 3). Therefore, 
metformin in FXS may decrease insulin-signaling 
and restore the circadian output pathway and in turn 
have positive effects on memory and sleep. A pilot, 
open-label study of response to metformin in 21 
children with PWS and six with early morbid obesity 
(EMO) showed significant improvements in food-
related distress, anxiety, and ability to be redirected 
away from food. Within the PWS group, responders 
to metformin had higher 2-hour glucose levels on oral 
glucose tolerance test and higher fasting insulin levels. 
Additionally, parents of 5/13 individuals with PWS 
and 5/6 with EMO reported recognition of satiety (64). 
Further studies are necessary to determine the safety 
and efficacy of metformin in FXS, PWS and FXS-PWP.

4. Future directions for research

Understanding the similarities and differences 
between PWS and the PWP of FXS will lead to new 
treatments perhaps for both disorders. Since CYFIP1 

is down-regulated in the PWP and because the clinical 
phenotypes are so similar across both disorders, 
it is likely that epigenetic changes or methylation 
differences may be down-regulating other genes in 
the 15 q 11-13 region in those with the PWP. Further 
studies are warranted to determine whether the reduced 
expression of multiple genes in PWS also occur in FXS-
PWP. These genes include, MKRN3 (65), MAGEL2 (66), 
MAGED1 (67), NECDIN (68,69) and SNURF-SNRPRN 
(70). To understand more about hyperphagia phenotype 
in FXS-PWP, studies regarding the GABA network 
in the brain are required. In addition, as chronic 
hyperghrelinaemia promotes hyperphagia in PWS (71), 
it would be interesting to see ghrelin levels in patients 
with the FXS-PWP. 
 A variety of new treatments are currently being 
studied in PWS and reviewed in Miller et al. (2015). 
Although GH treatment has many beneficial effects, 
it does not significantly help the hyperphagia. Some 
of the new medications that are being studied in PWS 
include Diazoxide, a potent K+-ATP channel agonist that 
hyperpolarizes hypothalamic neurons whose activity is 
impaired by a defective leptin signaling pathway in PWS 
(NCT02-34071); AZP-573, an unacylated ghrelin analog; 
Exanatide/Liraglutide, glucagon-like peptide 1 (GLP-1) 
receptor agonist which can suppress appetite and reduce 
weight in PWS and obese patients (NCT014448981/
NCT01542242). Clearly the study of those with FXS-

Figure 3. Mechanism of action of metformin. Metformin decreases protein synthesis and insulin signaling (IS) via the 
AMPK/Akt/mTOR pathway, it also inhibits the lipid and sterol biosynthetic pathways
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PWP will determine whether they have the potential to 
benefit from some of these new trials that have occurred 
in PWS. The future of treatment of both disorders looks 
bright with the advent of targeted treatments based on the 
neurobiological studies of both disorders.
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